Averaged Nyström interpolants for the solution of Fredholm integral equations of the second kind

被引:5
|
作者
Fermo, Luisa [1 ]
Reichel, Lothar [2 ]
Rodriguez, Giuseppe [1 ]
Spalevic, Miodrag M. [3 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Via Osped 72, I-09124 Cagliari, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[3] Univ Belgrade, Fac Mech Engn, Dept Math, Kraljice Marije 16, Belgrade 11120, Serbia
关键词
Fredholm integral equations of the second kind; Gauss quadrature rule; Averaged quadrature rule; Nystrom method; QUADRATURE-FORMULAS; NUMERICAL TREATMENT; NYSTROM METHOD; SYSTEMS;
D O I
10.1016/j.amc.2023.128482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fredholm integral equations of the second kind that are defined on a finite or infinite interval arise in many applications. This paper discusses Nystrom methods based on Gauss quadrature rules for the solution of such integral equations. It is important to be able to estimate the error in the computed solution, because this allows the choice of an appropriate number of nodes in the Gauss quadrature rule used. This paper explores the application of averaged and weighted averaged Gauss quadrature rules for this purpose and introduces new stability properties of them.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] About Uniqueness of Solutions of Fredholm Linear Integral Equations of the First Kind in the Axis
    Asanov, Avyt
    Orozmamalova, Jypar
    FILOMAT, 2019, 33 (05) : 1329 - 1333
  • [32] Extrapolation of Nystrom solution for two-dimensional nonlinear Fredholm integral equations
    Guoqiang H.
    Jiong W.
    Journal of Scientific Computing, 1999, 14 (2) : 197 - 209
  • [33] Mathematical Eigenfunctions analysis for 2nd Kind of Fredholm Integral equations
    Al-Taee, Lamiaa Hazim
    Fawze, Ahmed A. Mohammed
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 304 - 313
  • [34] EXTRAPOLATION METHODS FOR THE NUMERICAL SOLUTION OF NONLINEAR FREDHOLM INTEGRAL EQUATIONS
    Brezinski, Claude
    Redivo-Zaglia, Michela
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (01) : 29 - 57
  • [35] Numerical solution of nonlinear fractional integral differential equations by using the second kind Chebyshev wavelets
    Chen, Yiming
    Sun, Lu
    Li, Xuan
    Fu, Xiaohong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 90 (05): : 359 - 378
  • [36] Application of hat functions to solve linear Fredholm fuzzy integral equation of the second kind
    Mirzaee, Farshid
    Paripour, Mahmoud
    Yari, Mohammad Komak
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (01) : 211 - 220
  • [37] A meshless approximate solution of mixed Volterra-Fredholm integral equations
    Dastjerdi, H. Laeli
    Ghaini, F. M. Maalek
    Hadizadeh, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (03) : 527 - 538
  • [38] Non-uniform UE-spline quasi-interpolants and their application to the numerical solution of integral equations
    Nour, M. -Y.
    Lamnii, A.
    Zidna, A.
    Barrera, D.
    APPLIED NUMERICAL MATHEMATICS, 2023, 191 : 29 - 44
  • [39] On numerical solution of Fredholm and Hammerstein integral equations via Nystrom method and Gaussian quadrature rules for splines
    Barrera, D.
    Barton, M.
    Chiarella, I
    Remogna, S.
    APPLIED NUMERICAL MATHEMATICS, 2022, 174 : 71 - 88
  • [40] Application of Triangular and Delta Basis Functions to Solve Linear Fredholm Fuzzy Integral Equation of the Second Kind
    Mirzaee, Farshid
    Paripour, Mahmoud
    Yari, Mohammad Komak
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (05) : 3969 - 3978