Averaged Nyström interpolants for the solution of Fredholm integral equations of the second kind

被引:5
|
作者
Fermo, Luisa [1 ]
Reichel, Lothar [2 ]
Rodriguez, Giuseppe [1 ]
Spalevic, Miodrag M. [3 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Via Osped 72, I-09124 Cagliari, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[3] Univ Belgrade, Fac Mech Engn, Dept Math, Kraljice Marije 16, Belgrade 11120, Serbia
关键词
Fredholm integral equations of the second kind; Gauss quadrature rule; Averaged quadrature rule; Nystrom method; QUADRATURE-FORMULAS; NUMERICAL TREATMENT; NYSTROM METHOD; SYSTEMS;
D O I
10.1016/j.amc.2023.128482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fredholm integral equations of the second kind that are defined on a finite or infinite interval arise in many applications. This paper discusses Nystrom methods based on Gauss quadrature rules for the solution of such integral equations. It is important to be able to estimate the error in the computed solution, because this allows the choice of an appropriate number of nodes in the Gauss quadrature rule used. This paper explores the application of averaged and weighted averaged Gauss quadrature rules for this purpose and introduces new stability properties of them.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] AN ANALYSIS OF TWO DIMENSIONAL INTEGRAL EQUATIONS OF THE SECOND KIND
    El-Borai, M. M.
    Abdou, M. A.
    Basseem, M.
    MATEMATICHE, 2007, 62 (01): : 15 - 39
  • [22] Legendre Superconvergent Degenerate Kernel and Nyström Methods for Nonlinear Integral Equations
    Allouch, C.
    Arrai, M.
    Bouda, H.
    Tahrichi, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (5) : 663 - 681
  • [23] Application of Taylor Expansion for Fredholm Integral Equations of the First Kind
    Didgar, Mohsen
    Vahidi, Alireza
    Biazar, Jafar
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (05): : 1 - 14
  • [24] A Nystrom method for a class of Fredholm integral equations of the third kind on unbounded domains
    Fermo, Luisa
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (12) : 2970 - 2989
  • [25] A class of linear and nonlinear Fredholm integral equations of the third kind
    Asanov, Avyt
    Matanova, Kalyskan B.
    Asanov, Ruhidin A.
    KUWAIT JOURNAL OF SCIENCE, 2017, 44 (01) : 17 - 28
  • [26] On the numerical solution of Fredholm integral equations on unbounded intervals
    Frammartino, C
    Laurita, C
    Mastroianni, G
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (02) : 355 - 378
  • [27] Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations
    Han, GQ
    Wang, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 134 (1-2) : 259 - 268
  • [28] Three Methods to Solve Two Classes of Integral Equations of the Second Kind
    Chebbah, Hassna
    Mennouni, Abdelaziz
    Zennir, Khaled
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [29] Spectrally accurate Nystrom-solver error bounds for 1-D Fredholm integral equations of the second kind
    Fairbairn, Abigail I.
    Kelmanson, Mark A.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 211 - 223
  • [30] Fast collocation methods for second kind integral equations
    Chen, ZY
    Micchelli, CA
    Xu, YS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) : 344 - 375