共 31 条
A new cohomology class on the moduli space of curves
被引:17
作者:
Norbury, Paul
[1
]
机构:
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
关键词:
GROMOV-WITTEN INVARIANTS;
TOPOLOGICAL RECURSION;
INTERSECTION THEORY;
D O I:
10.2140/gt.2023.27.2695
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We define a collection Theta(g,n) is an element of H4g-4 ((M) over bar (g,n), Q) for 2g - 2 + n> 0 of cohomology classes that restrict naturally to boundary divisors. We prove that the intersection numbers integral(M) over bar (g,n), Theta(g,n) Pi(n)(i=1) psi(mi)(i) can be recursively calculated. We conjecture that a generating function for these intersection numbers is a tau function of the KdV hierarchy. This is analogous to the conjecture of Witten proven by Kontsevich that a generating function for the intersection numbers integral(M) over bar (g,n), Theta(g,n) Pi(n)(i=1) psi(mi)(i) is a tau function of the KdV hierarchy.
引用
收藏
页码:2695 / 2761
页数:67