A new cohomology class on the moduli space of curves

被引:17
作者
Norbury, Paul [1 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
关键词
GROMOV-WITTEN INVARIANTS; TOPOLOGICAL RECURSION; INTERSECTION THEORY;
D O I
10.2140/gt.2023.27.2695
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a collection Theta(g,n) is an element of H4g-4 ((M) over bar (g,n), Q) for 2g - 2 + n> 0 of cohomology classes that restrict naturally to boundary divisors. We prove that the intersection numbers integral(M) over bar (g,n), Theta(g,n) Pi(n)(i=1) psi(mi)(i) can be recursively calculated. We conjecture that a generating function for these intersection numbers is a tau function of the KdV hierarchy. This is analogous to the conjecture of Witten proven by Kontsevich that a generating function for the intersection numbers integral(M) over bar (g,n), Theta(g,n) Pi(n)(i=1) psi(mi)(i) is a tau function of the KdV hierarchy.
引用
收藏
页码:2695 / 2761
页数:67
相关论文
共 31 条
[1]   A calculus for the moduli space of curves [J].
Pandharipande, Rahul .
ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 :459-487
[2]   Quantum cohomology of moduli spaces of genus zero stable curvesQuantum cohomology of moduli spaces of genus zero stable curves [J].
Fontanari, Claudio .
RICERCHE DI MATEMATICA, 2007, 56 (02) :277-284
[3]   Quantum cohomology of moduli spaces of genus zero stable curves [J].
Fontanari C. .
Ricerche di Matematica, 2007, 56 (2) :277-284
[4]   Polynomial Relations Among Kappa Classes on the Moduli Space of Curves [J].
Kazarian, Maxim ;
Norbury, Paul .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (03) :1825-1867
[5]   COUNTING LATTICE POINTS IN THE MODULI SPACE OF CURVES [J].
Norbury, Paul .
MATHEMATICAL RESEARCH LETTERS, 2010, 17 (03) :467-481
[6]   The Chen-Ruan cohomology of moduli of curves of genus 2 with marked points [J].
Pagani, Nicola .
ADVANCES IN MATHEMATICS, 2012, 229 (03) :1643-1687
[7]   The Chow ring of the moduli space of curves of genus six [J].
Penev, Nikola ;
Vakil, Ravi .
ALGEBRAIC GEOMETRY, 2015, 2 (01) :123-136
[8]   Topological recursion for the Poincare polynomial of the combinatorial moduli space of curves [J].
Mulase, Motohico ;
Penkava, Michael .
ADVANCES IN MATHEMATICS, 2012, 230 (03) :1322-1339
[9]   A MODULI STACK OF TROPICAL CURVES [J].
Cavalieri, Renzo ;
Chan, Melody ;
Ulirsch, Martin ;
Wise, Jonathan .
FORUM OF MATHEMATICS SIGMA, 2020, 8
[10]   The Moduli Space of Curves, Double Hurwitz Numbers, and Faber's Intersection Number Conjecture [J].
Goulden, I. P. ;
Jackson, D. M. ;
Vakil, R. .
ANNALS OF COMBINATORICS, 2011, 15 (03) :381-436