NEWTON POLYGONS AND RESONANCES OF MULTIPLE DELTA-POTENTIALS

被引:0
|
作者
Datchev, Kiril [1 ]
Marzuola, Jeremy L. [2 ]
Wunsch, Jared [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ North Carolina Chapel Hill, Dept Math, Chapel Hill, NC 27599 USA
[3] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
SCATTERING;
D O I
10.1090/tran/9056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove explicit asymptotics for the location of semiclassical scattering resonances in the setting of h-dependent delta-function potentials on R. In the cases of two or three delta poles, we are able to show that resonances occur along specific lines of the form Imz similar to -gamma h log(1/h). More generally, we use the method of Newton polygons to show that resonances near the real axis may only occur along a finite collection of such lines, and we bound the possible number of values of the parameter.. We present numerical evidence of the existence of more and more possible values of. for larger numbers of delta poles.
引用
收藏
页码:2009 / 2025
页数:17
相关论文
共 50 条
  • [21] EIGENSTATES OF AN ELECTRON IN ORDERED AND DISORDERED ENSEMBLES OF SCATTERS .3. APPLICATION TO SYSTEMS OF DELTA-POTENTIALS IN ONE DIMENSION
    UNGER, HJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (26): : 3727 - 3743
  • [22] On spin flip for electron scattering by several delta-potentials for 1D Hamiltonian with spin-orbit interaction
    Blinova, Irina V.
    Grishanov, Evgeny N.
    Popov, Anton I.
    Popov, Igor Y.
    Smolkina, Maria O.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2023, 14 (04): : 413 - 417
  • [23] Transmission resonances and Bloch states for a periodic array of delta function potentials
    Berman, P. R.
    AMERICAN JOURNAL OF PHYSICS, 2013, 81 (03) : 190 - 201
  • [24] ESTIMATION OF LOJASIEWICZ EXPONENTS AND NEWTON POLYGONS
    LICHTIN, B
    INVENTIONES MATHEMATICAE, 1981, 64 (03) : 417 - 429
  • [25] Erratum to: Newton polygons and curve gonalities
    Wouter Castryck
    Filip Cools
    Journal of Algebraic Combinatorics, 2012, 35 (3) : 367 - 372
  • [26] Newton Polygons for a Variant of the Kloosterman Family
    Bellovin, Rebecca
    Garthwaite, Sharon Anne
    Ozman, Ekin
    Pries, Rachel
    Williams, Cassandra
    Zhu, Hui June
    WOMEN IN NUMBERS 2: RESEARCH DIRECTIONS IN NUMBER THEORY, 2013, 606 : 47 - 63
  • [27] NEWTON POLYGONS FOR GENERAL HYPERKLOOSTERMAN SUMS
    SPERBER, S
    ASTERISQUE, 1984, (119-) : 267 - 330
  • [28] Higher Newton polygons and integral bases
    Guardia, Jordi
    Montes, Jesus
    Nart, Enric
    JOURNAL OF NUMBER THEORY, 2015, 147 : 549 - 589
  • [29] Variance of the spectral numbers and Newton polygons
    Brélivet, T
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (04): : 333 - 342
  • [30] Asymptotic formula of the number of Newton polygons
    Harashita, Shushi
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 113 - 132