Numerical Feature Selection and Hyperbolic Tangent Feature Scaling in Machine Learning-Based Detection of Anomalies in the Computer Network Behavior

被引:5
|
作者
Protic, Danijela [1 ]
Stankovic, Miomir [2 ]
Prodanovic, Radomir [1 ]
Vulic, Ivan [3 ]
Stojanovic, Goran M. [4 ]
Simic, Mitar [4 ]
Ostojic, Gordana [4 ]
Stankovski, Stevan [4 ]
机构
[1] Ctr Appl Math & Elect, Belgrade 11000, Serbia
[2] Math Inst SASA, Belgrade 11000, Serbia
[3] Univ Def, Mil Acad, Belgrade 11042, Serbia
[4] Univ Novi Sad, Fac Tech Sci, Novi Sad 21000, Serbia
关键词
machine learning; binary classification; intrusion detection; feature scaling; feature selection; INTRUSION DETECTION SYSTEM; MUTUAL INFORMATION; DECISION TREE; PERFORMANCE; ALGORITHMS;
D O I
10.3390/electronics12194158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly-based intrusion detection systems identify the computer network behavior which deviates from the statistical model of typical network behavior. Binary classifiers based on supervised machine learning are very accurate at classifying network data into two categories: normal traffic and anomalous activity. Most problems with supervised learning are related to the large amount of data required to train the classifiers. Feature selection can be used to reduce datasets. The goal of feature selection is to select a subset of relevant input features to optimize the evaluation and improve performance of a given classifier. Feature scaling normalizes all features to the same range, preventing the large size of features from affecting classification models or other features. The most commonly used supervised machine learning models, including decision trees, support vector machine, k-nearest neighbors, weighted k-nearest neighbors and feedforward neural network, can all be improved by using feature selection and feature scaling. This paper introduces a new feature scaling technique based on a hyperbolic tangent function and damping strategy of the Levenberg-Marquardt algorithm.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Feature Selection Approach for Phishing Detection Based on Machine Learning
    Wei, Yi
    Sekiya, Yuji
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON APPLIED CYBER SECURITY (ACS) 2021, 2022, 378 : 61 - 70
  • [22] Phishing detection based on machine learning and feature selection methods
    Almseidin M.
    Abu Zuraiq A.M.
    Al-kasassbeh M.
    Alnidami N.
    International Journal of Interactive Mobile Technologies, 2019, 13 (12) : 71 - 183
  • [23] Optimal feature selection for machine learning based intrusion detection system by exploiting attribute dependence
    Dubey, Ghanshyam Prasad
    Bhujade, Rakesh Kumar
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 6325 - 6331
  • [24] Feature Selection and Intrusion Detection in Cloud Environment based on Machine Learning Algorithms
    Javadpour, Amir
    Abharian, Sanaz Kazemi
    Wang, Guojun
    2017 15TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS AND 2017 16TH IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS (ISPA/IUCC 2017), 2017, : 1417 - 1421
  • [25] Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction
    Md. Alamin Talukder
    Md. Manowarul Islam
    Md Ashraf Uddin
    Khondokar Fida Hasan
    Selina Sharmin
    Salem A. Alyami
    Mohammad Ali Moni
    Journal of Big Data, 11
  • [26] Enhancing malware detection with feature selection and scaling techniques using machine learning models
    Hasan, Rakibul
    Biswas, Barna
    Samiun, Md
    Saleh, Mohammad Abu
    Prabha, Mani
    Akter, Jahanara
    Joya, Fatema Haque
    Abdullah, Masuk
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [27] Enhancing intrusion detection in IoT networks using machine learning-based feature selection and ensemble models
    Almotairi, Ayoob
    Atawneh, Samer
    Khashan, Osama A.
    Khafajah, Nour M.
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [28] Machine Learning-Based Feature Selection and Classification for the Experimental Diagnosis of Trypanosoma cruzi
    Hevia-Montiel, Nidiyare
    Perez-Gonzalez, Jorge
    Neme, Antonio
    Haro, Paulina
    ELECTRONICS, 2022, 11 (05)
  • [29] Incorporating feature selection methods into a machine learning-based neonatal seizure diagnosis
    Acikoglu, Merve
    Tuncer, Seda Arslan
    MEDICAL HYPOTHESES, 2020, 135
  • [30] Optimizing IoT intrusion detection system: feature selection versus feature extraction in machine learning
    Jing Li
    Mohd Shahizan Othman
    Hewan Chen
    Lizawati Mi Yusuf
    Journal of Big Data, 11