Exploration of anti-tumour inhibitors from colchicine derivatives based on 3D-QSAR, molecular docking and molecular dynamics simulations

被引:2
作者
Tong, Jian-Bo [1 ,2 ]
Liu, Yuan [1 ,2 ]
Xiao, Xue-chun [1 ,2 ]
Gao, Peng [1 ,2 ]
Xu, Hai-yin [1 ,2 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Xian, Peoples R China
[2] Shaanxi Key Lab Chem Addit Ind, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Microtubule protein inhibitor; Colchicine; Topomer coMFA; Molecular docking; Molecular dynamics; CANCER BURDEN; TOPOMER COMFA; IN-SILICO; QSAR; DISCOVERY; DESIGN; 1,4-DIHYDROPYRIDINES; VALIDATION; CHEMISTRY; INSIGHT;
D O I
10.1080/08927022.2023.2259499
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microtubulin is an important research target for anti-tumour drugs, which can be used to inhibit microtubulin polymerisation and improve the efficacy of tumour therapy. In this paper, 61 microtubule protein inhibitors with anticancer activity are selected as the data set for building a stable and effective QSAR (Topomer CoMFA) model, resulting in a Topomer CoMFA model with validation coefficients of $q<^>2$q2 = 0.737 and $r<^>2$r2 = 0.922. Fifteen new inhibitors with theoretically high activity are designed by screening the zinc database for new fragments with good activity through the contribution descriptors obtained by Topomer CoMFA. After simulating the binding affinity and interaction of the inhibitors with the proteins by molecular docking, all these compounds formed strong interactions such as hydrogen bonds with multiple amino acids in the receptor proteins. Furthermore, molecular dynamics results show that the predicted highly active compounds exhibited stable and favourable binding patterns to the active pocket. In addition, these new compounds exhibit good ADMET properties. The present work establishes a reliable QSAR model for computational simulation screening of microtubulin drug development and provides a basis for further access to novel microtubulin inhibitors.
引用
收藏
页码:1647 / 1665
页数:19
相关论文
共 50 条
  • [31] Combined 3D-QSAR, molecular docking, and molecular dynamics study on potent cyclohexene-based influenza neuraminidase inhibitors
    Cheng, Li Ping
    Huang, Xin Ying
    Wang, Zhi
    Kai, Zhen Peng
    Wu, Fan Hong
    MONATSHEFTE FUR CHEMIE, 2014, 145 (07): : 1213 - 1225
  • [32] Molecular Docking and 3D-QSAR Studies on Quinolone-based HDAC Inhibitors
    Bi, Yi
    Liu, Zeyun
    Liu, Xianxuan
    Zhang, Xiaochen
    Lu, Jing
    LETTERS IN DRUG DESIGN & DISCOVERY, 2016, 13 (07) : 577 - 586
  • [33] Study on β-glucosidase activators by 3D-QSAR, molecular docking and molecular dynamics simulation
    Jiang, Guilan
    Li, Silin
    Zhu, Jingyi
    Li, Binbin
    Ding, Zhuhong
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 404
  • [34] 3D-QSAR and Molecular Docking Studies of Flavonoid Derivatives as Potent Acetylcholinesterase Inhibitors
    Zhou, An
    Wu, Zeyu
    Hui, Ailing
    Wang, Bin
    Duan, Xianchun
    Wang, Haixiang
    Pan, Jian
    LETTERS IN DRUG DESIGN & DISCOVERY, 2015, 12 (10) : 837 - 843
  • [35] 3D-QSAR, molecular docking, and molecular dynamics analysis of dihydrodiazaindolone derivatives as PARP-1 inhibitors
    Jing Zhao
    Na Yu
    Xuemin Zhao
    Wenxuan Quan
    Mao Shu
    Journal of Molecular Modeling, 2023, 29
  • [36] Molecular modeling studies of atorvastatin analogues as HMGR inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations
    Wang, Zhi
    Cheng, Liping
    Kai, Zhenpeng
    Wu, Fanhong
    Liu, Zhuoyu
    Cai, Minfeng
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2014, 24 (16) : 3869 - 3876
  • [37] A Combination of 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation Studies of Benzimidazole-Quinolinone Derivatives as iNOS Inhibitors
    Zhang, Hao
    Zan, Jinhang
    Yu, Guangyun
    Jiang, Ming
    Liu, Peixun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (09) : 11210 - 11227
  • [38] Studies on the inhibitory models of pyrazoline derivatives as EGFR kinase inhibitors by 3D-QSAR and molecular docking
    Li, Peizhen
    Tian, Yueli
    Zhai, Honglin
    Deng, Fangfang
    Xie, Meihong
    Zhang, Xiaoyun
    MEDICINAL CHEMISTRY RESEARCH, 2014, 23 (06) : 2869 - 2879
  • [39] Molecular modelling studies of quinazolinone derivatives as MMP-13 inhibitors by QSAR, molecular docking and molecular dynamics simulations techniques
    Huang, Shanshan
    Feng, Kairui
    Ren, Yujie
    MEDCHEMCOMM, 2019, 10 (01) : 101 - 115
  • [40] Molecular modelling of quinoline derivatives as telomerase inhibitors through 3D-QSAR, molecular dynamics simulation, and molecular docking techniques
    Keerti Vishwakarma
    Hardik Bhatt
    Journal of Molecular Modeling, 2021, 27