Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI

被引:9
作者
Coll, Llucia [1 ]
Pareto, Deborah
Carbonell-Mirabent, Pere [1 ]
Cobo-Calvo, Alvaro [1 ]
Arrambide, Georgina [1 ]
Vidal-Jordana, Angela [1 ]
Comabella, Manuel [1 ]
Castillo, Joaquin [1 ]
Rodriguez-Acevedo, Breogan [1 ]
Zabalza, Ana [1 ]
Galan, Ingrid [1 ]
Midaglia, Luciana [1 ]
Nos, Carlos [1 ]
Salerno, Annalaura [2 ]
Auger, Cristina [1 ,2 ]
Alberich, Manel [2 ]
Rio, Jordi [1 ]
Sastre-Garriga, Jaume [1 ]
Oliver, Arnau [3 ]
Montalban, Xavier [1 ]
Rovira, Alex [2 ]
Tintore, Mar [1 ]
Llado, Xavier [3 ]
Tur, Carmen [1 ]
机构
[1] Univ Autonoma Barcelona, Hosp Univ Vall dHebron, Multiple Sclerosis Ctr Catalonia Cemcat, Barcelona, Spain
[2] Univ Autonoma Barcelona, Vall dHebron Univ Hosp, Dept Radiol IDI, Sect Neuroradiol, Barcelona, Spain
[3] Univ Girona, Res Inst Comp Vis & Robot, Girona, Spain
关键词
Multiple sclerosis; Structural MRI; Deep learning; Attention maps; Disability; BRAIN; LESIONS;
D O I
10.1016/j.nicl.2023.103376
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
The application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation.From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: =3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps.The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any retraining (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system.
引用
收藏
页数:12
相关论文
共 53 条
[1]   Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis [J].
Amato, M. P. ;
Portaccio, E. ;
Stromillo, M. L. ;
Goretti, B. ;
Zipoli, V. ;
Siracusa, G. ;
Battaglini, M. ;
Giorgio, A. ;
Bartolozzi, M. L. ;
Guidi, L. ;
Sorbi, S. ;
Federico, A. ;
De Stefano, N. .
NEUROLOGY, 2008, 71 (09) :632-638
[2]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[3]   Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification [J].
Boehle, Moritz ;
Eitel, Fabian ;
Weygandt, Martin ;
Ritter, Kerstin .
FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
[4]   The role of cerebellar damage in explaining disability and cognition in multiple sclerosis phenotypes: a multiparametric MRI study [J].
Bonacchi, Raffaello ;
Meani, Alessandro ;
Pagani, Elisabetta ;
Marchesi, Olga ;
Filippi, Massimo ;
Rocca, Maria A. .
JOURNAL OF NEUROLOGY, 2022, 269 (07) :3841-3857
[5]   Remote Observational Research for Multiple Sclerosis A Natural Experiment [J].
Bove, Riley ;
Poole, Shane ;
Cuneo, Richard ;
Gupta, Sasha ;
Sabatino, Joseph, Jr. ;
Harms, Meagan ;
Cooper, Tifffany ;
Rowles, William ;
Miller, Nicolette ;
Gomez, Refujia ;
Lincoln, Robin ;
McPolin, Kira ;
Powers, Kyra ;
Santaniello, Adam ;
Renschen, Adam ;
Bevan, Carolyn J. ;
Gelfand, Jeffrey M. ;
Goodin, Douglas S. ;
Guo, Chu-Yueh ;
Romeo, Andrew R. ;
Hauser, Stephen L. ;
Cree, Bruce Anthony Campbell ;
UCSF MS-EPIC Team .
NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION, 2023, 10 (02)
[6]   An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis [J].
Brown, J. William L. ;
Pardini, Matteo ;
Brownlee, Wallace J. ;
Fernando, Kryshani ;
Samson, Rebecca S. ;
Prados Carrasco, Ferran ;
Ourselin, Sebastien ;
Gandini Wheeler-Kingshott, Claudia A. M. ;
Miller, David H. ;
Chard, Declan T. .
BRAIN, 2017, 140 (02) :387-398
[7]   Cortical Gray Matter MR Imaging in Multiple Sclerosis [J].
Calabrese, Massimiliano ;
Castellaro, Marco .
NEUROIMAGING CLINICS OF NORTH AMERICA, 2017, 27 (02) :301-+
[8]   Brain microstructural and metabolic alterations detected in vivo at onset of the first demyelinating event [J].
Collorone, Sara ;
Prados, Ferran ;
Kanber, Baris ;
Cawley, Niamh M. ;
Tur, Carmen ;
Grussu, Francesco ;
Solanky, Bhavana S. ;
Yiannakas, Marios ;
Davagnanam, Indran ;
Wheeler-Kingshott, Claudia A. M. Gandini ;
Barkhof, Frederik ;
Ciccarelli, Olga ;
Toosy, Ahmed T. .
BRAIN, 2021, 144 :1409-1421
[9]   Differences in Age-related Retinal and Cortical Atrophy Rates in Multiple Sclerosis [J].
Cordano, Christian ;
Nourbakhsh, Bardia ;
Yiu, Hao H. ;
Papinutto, Nico ;
Caverzasi, Eduardo ;
Abdelhak, Ahmed ;
Oertel, Frederike C. ;
Beaudry-Richard, Alexandra ;
Santaniello, Adam ;
Sacco, Simone ;
Bennett, Daniel J. ;
Gomez, Apraham ;
Sigurdson, Christina J. ;
Hauser, Stephen L. ;
Magliozzi, Roberta ;
Cree, Bruce A. C. ;
Henry, Roland G. ;
Green, Ari J. .
NEUROLOGY, 2022, 99 (15) :E1685-E1693
[10]   Interpretable deep learning as a means for decrypting disease signature in multiple sclerosis [J].
Cruciani, F. ;
Brusini, L. ;
Zucchelli, M. ;
Retuci Pinheiro, G. ;
Setti, F. ;
Boscolo Galazzo, I ;
Deriche, R. ;
Rittner, L. ;
Calabrese, M. ;
Menegaz, G. .
JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)