Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI

被引:6
作者
Coll, Llucia [1 ]
Pareto, Deborah
Carbonell-Mirabent, Pere [1 ]
Cobo-Calvo, Alvaro [1 ]
Arrambide, Georgina [1 ]
Vidal-Jordana, Angela [1 ]
Comabella, Manuel [1 ]
Castillo, Joaquin [1 ]
Rodriguez-Acevedo, Breogan [1 ]
Zabalza, Ana [1 ]
Galan, Ingrid [1 ]
Midaglia, Luciana [1 ]
Nos, Carlos [1 ]
Salerno, Annalaura [2 ]
Auger, Cristina [1 ,2 ]
Alberich, Manel [2 ]
Rio, Jordi [1 ]
Sastre-Garriga, Jaume [1 ]
Oliver, Arnau [3 ]
Montalban, Xavier [1 ]
Rovira, Alex [2 ]
Tintore, Mar [1 ]
Llado, Xavier [3 ]
Tur, Carmen [1 ]
机构
[1] Univ Autonoma Barcelona, Hosp Univ Vall dHebron, Multiple Sclerosis Ctr Catalonia Cemcat, Barcelona, Spain
[2] Univ Autonoma Barcelona, Vall dHebron Univ Hosp, Dept Radiol IDI, Sect Neuroradiol, Barcelona, Spain
[3] Univ Girona, Res Inst Comp Vis & Robot, Girona, Spain
关键词
Multiple sclerosis; Structural MRI; Deep learning; Attention maps; Disability; BRAIN; LESIONS;
D O I
10.1016/j.nicl.2023.103376
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
The application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation.From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: =3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps.The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any retraining (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system.
引用
收藏
页数:12
相关论文
共 53 条
  • [1] Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis
    Amato, M. P.
    Portaccio, E.
    Stromillo, M. L.
    Goretti, B.
    Zipoli, V.
    Siracusa, G.
    Battaglini, M.
    Giorgio, A.
    Bartolozzi, M. L.
    Guidi, L.
    Sorbi, S.
    Federico, A.
    De Stefano, N.
    [J]. NEUROLOGY, 2008, 71 (09) : 632 - 638
  • [2] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
    Bach, Sebastian
    Binder, Alexander
    Montavon, Gregoire
    Klauschen, Frederick
    Mueller, Klaus-Robert
    Samek, Wojciech
    [J]. PLOS ONE, 2015, 10 (07):
  • [3] Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification
    Boehle, Moritz
    Eitel, Fabian
    Weygandt, Martin
    Ritter, Kerstin
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
  • [4] The role of cerebellar damage in explaining disability and cognition in multiple sclerosis phenotypes: a multiparametric MRI study
    Bonacchi, Raffaello
    Meani, Alessandro
    Pagani, Elisabetta
    Marchesi, Olga
    Filippi, Massimo
    Rocca, Maria A.
    [J]. JOURNAL OF NEUROLOGY, 2022, 269 (07) : 3841 - 3857
  • [5] Remote Observational Research for Multiple Sclerosis A Natural Experiment
    Bove, Riley
    Poole, Shane
    Cuneo, Richard
    Gupta, Sasha
    Sabatino, Joseph, Jr.
    Harms, Meagan
    Cooper, Tifffany
    Rowles, William
    Miller, Nicolette
    Gomez, Refujia
    Lincoln, Robin
    McPolin, Kira
    Powers, Kyra
    Santaniello, Adam
    Renschen, Adam
    Bevan, Carolyn J.
    Gelfand, Jeffrey M.
    Goodin, Douglas S.
    Guo, Chu-Yueh
    Romeo, Andrew R.
    Hauser, Stephen L.
    Cree, Bruce Anthony Campbell
    UCSF MS-EPIC Team
    [J]. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION, 2023, 10 (02):
  • [6] An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis
    Brown, J. William L.
    Pardini, Matteo
    Brownlee, Wallace J.
    Fernando, Kryshani
    Samson, Rebecca S.
    Prados Carrasco, Ferran
    Ourselin, Sebastien
    Gandini Wheeler-Kingshott, Claudia A. M.
    Miller, David H.
    Chard, Declan T.
    [J]. BRAIN, 2017, 140 (02) : 387 - 398
  • [7] Cortical Gray Matter MR Imaging in Multiple Sclerosis
    Calabrese, Massimiliano
    Castellaro, Marco
    [J]. NEUROIMAGING CLINICS OF NORTH AMERICA, 2017, 27 (02) : 301 - +
  • [8] Brain microstructural and metabolic alterations detected in vivo at onset of the first demyelinating event
    Collorone, Sara
    Prados, Ferran
    Kanber, Baris
    Cawley, Niamh M.
    Tur, Carmen
    Grussu, Francesco
    Solanky, Bhavana S.
    Yiannakas, Marios
    Davagnanam, Indran
    Wheeler-Kingshott, Claudia A. M. Gandini
    Barkhof, Frederik
    Ciccarelli, Olga
    Toosy, Ahmed T.
    [J]. BRAIN, 2021, 144 : 1409 - 1421
  • [9] Differences in Age-related Retinal and Cortical Atrophy Rates in Multiple Sclerosis
    Cordano, Christian
    Nourbakhsh, Bardia
    Yiu, Hao H.
    Papinutto, Nico
    Caverzasi, Eduardo
    Abdelhak, Ahmed
    Oertel, Frederike C.
    Beaudry-Richard, Alexandra
    Santaniello, Adam
    Sacco, Simone
    Bennett, Daniel J.
    Gomez, Apraham
    Sigurdson, Christina J.
    Hauser, Stephen L.
    Magliozzi, Roberta
    Cree, Bruce A. C.
    Henry, Roland G.
    Green, Ari J.
    [J]. NEUROLOGY, 2022, 99 (15) : E1685 - E1693
  • [10] Interpretable deep learning as a means for decrypting disease signature in multiple sclerosis
    Cruciani, F.
    Brusini, L.
    Zucchelli, M.
    Retuci Pinheiro, G.
    Setti, F.
    Boscolo Galazzo, I
    Deriche, R.
    Rittner, L.
    Calabrese, M.
    Menegaz, G.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)