An improved multi-state constraint kalman filter based on maximum correntropy criterion

被引:1
|
作者
Liu, Xuhang [1 ]
Guo, Yicong [2 ]
机构
[1] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Peoples R China
[2] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-state constraint Kalman filter; visual-inertial system; indoor positioning; maximum correntropy criterion; inertial navigation system; ROBUST; NAVIGATION; GPS/INS;
D O I
10.1088/1402-4896/acf68e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, the multi-state constraint Kalman filter has been widely used in the visual-inertial navigation of unmanned systems. However, in most previous studies, the measurement noise of the navigation system was assumed to be Gaussian noise, but this is not the case in practice. In this paper, the maximum correntropy criterion is introduced into the multi-state constraint Kalman filter to improve the robustness of the visual-inertial system. First, the new maximum correntropy criterion-based Kalman filter is introduced, it uses the maximum correntropy criterion to replace the minimum mean square error criterion to suppress the interference of measurement outliers on the filtering results, and it has no numerical problem in the presence of large measurements outliers. Then, an improved multi-state constraint Kalman filter is designed by applying the new maximum correntropy criterion-based Kalman filter to the multi-state constraint Kalman filter, which improved the robustness of the multi-state constraint Kalman filter. The results of numerical simulation and dataset experiments show that the proposed filter improves the accuracy and robustness of the visual-inertial system.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] State of charge estimation for Li-ion batteries based on iterative Kalman filter with adaptive maximum correntropy criterion
    Liu, Zheng
    Zhao, Zhenhua
    Qiu, Yuan
    Jing, Benqin
    Yang, Chunshan
    JOURNAL OF POWER SOURCES, 2023, 580
  • [12] Vehicle lateral state estimation with square root cubature Kalman filter under maximum correntropy criterion
    Bei, Shaoyi
    Tang, Haoran
    Li, Bo
    Yin, Guodong
    Daoud, Walid
    Yi, Aibin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2025,
  • [13] Robust maximum correntropy criterion based square-root rotating lattice Kalman filter
    Liu, Sanshan
    Wang, Shiyuan
    Lin, Dongyuan
    Zheng, Yunfei
    Guo, Zhongyuan
    Kuang, Zhijian
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6041 - 6053
  • [14] Maximum Correntropy Extended Kalman Filter for Vehicle State Observation
    Dengliang Qi
    Jingan Feng
    Xiangdong Ni
    Lei Wang
    International Journal of Automotive Technology, 2023, 24 : 377 - 388
  • [15] Maximum Correntropy Quaternion Kalman Filter
    Lin, Dongyuan
    Zhang, Qiangqiang
    Chen, Xiaofeng
    Wang, Shiyuan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2792 - 2803
  • [16] A distributed maximum correntropy Kalman filter
    Wang, Gang
    Xue, Rui
    Wang, Jinxin
    SIGNAL PROCESSING, 2019, 160 : 247 - 251
  • [17] Robust Information Filter Based on Maximum Correntropy Criterion
    Wang, Yidi
    Zheng, Wei
    Sun, Shouming
    Li, Li
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (05) : 1124 - +
  • [18] Improved Maximum Correntropy Unscented Kalman Filter for Spacecraft Attitude Estimation
    Chu, Shuai
    Qian, Huaming
    Ding, Peng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (06) : 2020 - 2030
  • [19] Improved Maximum Correntropy Unscented Kalman Filter for Spacecraft Attitude Estimation
    Shuai Chu
    Huaming Qian
    Peng Ding
    International Journal of Control, Automation and Systems, 2023, 21 : 2020 - 2030
  • [20] Accommodating the multi-state constraint Kalman filter for visual-inertial navigation in a moving and stationary flight
    Mahmoudi, Arshiya
    Mortazavi, Mahdi
    Sabzehparvar, Mehdi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2022, 236 (07) : 1295 - 1303