An improved multi-state constraint kalman filter based on maximum correntropy criterion

被引:1
|
作者
Liu, Xuhang [1 ]
Guo, Yicong [2 ]
机构
[1] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Peoples R China
[2] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-state constraint Kalman filter; visual-inertial system; indoor positioning; maximum correntropy criterion; inertial navigation system; ROBUST; NAVIGATION; GPS/INS;
D O I
10.1088/1402-4896/acf68e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, the multi-state constraint Kalman filter has been widely used in the visual-inertial navigation of unmanned systems. However, in most previous studies, the measurement noise of the navigation system was assumed to be Gaussian noise, but this is not the case in practice. In this paper, the maximum correntropy criterion is introduced into the multi-state constraint Kalman filter to improve the robustness of the visual-inertial system. First, the new maximum correntropy criterion-based Kalman filter is introduced, it uses the maximum correntropy criterion to replace the minimum mean square error criterion to suppress the interference of measurement outliers on the filtering results, and it has no numerical problem in the presence of large measurements outliers. Then, an improved multi-state constraint Kalman filter is designed by applying the new maximum correntropy criterion-based Kalman filter to the multi-state constraint Kalman filter, which improved the robustness of the multi-state constraint Kalman filter. The results of numerical simulation and dataset experiments show that the proposed filter improves the accuracy and robustness of the visual-inertial system.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Maximum Correntropy Criterion Based Robust Kalman Filter
    Wang, Liansheng
    Gao, XingWei
    Yin, Lijian
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2018 PROCEEDINGS, VOL III, 2018, 499 : 491 - 500
  • [2] Maximum Correntropy Criterion Kalman Filter Based Target Tracking with State Constraints
    Zou, Yiqun
    Zou, Shuang
    Tang, Xiafei
    Yu, Lingli
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3505 - 3510
  • [3] An Improved Kalman Filter for TOA Localization using Maximum Correntropy Criterion
    Qi, Yue
    Ji, Mengmeng
    Xu, Cheng
    Wan, Jiawang
    He, Jie
    2019 28TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2019, : 501 - 504
  • [4] An improved Multi-State Constraint Kalman Filter for Visual-Inertial Odometry
    Abdollahi, M. R.
    Pourtakdoust, Seid H.
    Nooshabadi, M. H. Yoosefian
    Pishkenari, H. N.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (15):
  • [5] Diffusion Kalman filter by using maximum correntropy criterion
    Li, Wenling
    Xiong, Kai
    Liu, Yang
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 203 - 208
  • [6] Improved maximum correntropy criterion Kalman filter with adaptive behaviors for INS/UWB fusion positioning algorithm
    Wang, Yan
    Fu, Shengqing
    Wang, Fuhui
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 702 - 714
  • [7] A finite-time consensus distributed Kalman filter based on maximum correntropy criterion
    Zhang, Peng
    Xu, Qiuling
    Liu, Peng
    Li, Mengwei
    SIGNAL PROCESSING, 2025, 230
  • [8] Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion
    Deng, Zhihong
    Yin, Lijian
    Huo, Baoyu
    Xia, Yuanqing
    SENSORS, 2018, 18 (08)
  • [9] Improved Maximum Correntropy Cubature Kalman Filter for Cooperative Localization
    Li, Shengxin
    Xu, Bo
    Wang, Lianzhao
    Razzaqi, Asghar A.
    IEEE SENSORS JOURNAL, 2020, 20 (22) : 13585 - 13595
  • [10] Maximum Correntropy Extended Kalman Filter for Vehicle State Observation
    Qi, Dengliang
    Feng, Jingan
    Ni, Xiangdong
    Wang, Lei
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (02) : 377 - 388