Facile fabrication of CdS/Cu-doped g-C3N4 heterojunction for enhanced photocatalytic degradation of methylene blue

被引:4
|
作者
Li, Cuilin [1 ]
Zhai, Qianqian [1 ]
Liu, Wenqing [1 ]
Yang, Quanlu [1 ]
Li, Qiao [1 ]
Zhang, Xinghui [1 ]
机构
[1] Lanzhou Univ Art & Sci, Coll Chem Engn, Beimiantan 400, Lanzhou 730000, Gansu, Peoples R China
关键词
GRAPHITIC CARBON NITRIDE; VISIBLE-LIGHT; SUPRAMOLECULAR NETWORK; HYDROGEN-PRODUCTION; H-2; PRODUCTION; COMPOSITES; NANOSHEETS; CU; CO; PHOTODEGRADATION;
D O I
10.1007/s10854-023-11055-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A semiconductor photocatalyst serves as the primary component in photocatalytic oxidation. Scientists are known to be working on modifying existing catalysts and developing new efficient photocatalysts. In recent years, g-C3N4 has attracted wide attention due to its high stability, non-toxicity, cost-effectiveness, and adjustable band-gap energy. However, g-C3N4 also has shortcomings such as ineffcient visible light absorption, a high recombination rate of photoinduced electrons and holes and low quantum efficiency, which significantly restrict its photocatalytic activity. Here, an innovative ternary composite photocatalyst CdS@Cu/g-C3N4 has been successfully fabricated using a simple method, and the photocatalytic degradation of methylene blue (MB) by the CdS@Cu/g-C3N4 composite photocatalyst was also studied. Systematic studies showed that the photocatalytic degradation rate of CdS@Cu/g-C3N4 on MB reached 85.19% within 20 min, which was 2.58 and 1.88 times higher than that of CdS and g-C3N4, respectively. Free radical capture experiments showed that & BULL;O-2(-) plays a significant role during the photocatalytic process. It is postulated that a type II heterojunction might be formed between CdS and g-C3N4, effectively restricting photoinduced carrier recombination and enhancing visible light absorption. Cu doping changes the optical properties, affects the energy band structure of g-C3N4, increases the efficiency of electron transfer and improves the electron/hole separation rate, which helps to improve the photocatalytic activity. This work provides a valuable strategy to improve the photocatalytic performance of g-C3N4.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Facile synthesis of MnO2/g-C3N4 for photocatalytic reduction of methylene blue dye under visible light
    Abdullah, Muhammad
    Alahmari, Saeed D.
    Alharbi, F. F.
    Ejaz, Syeda Rabia
    Waheed, Muhammad Suleman
    Aman, Salma
    Al-Sehemi, Abdullah G.
    Henaish, A. M. A.
    Ahmad, Zubair
    Farid, Hafiz Muhammad Tahir
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (07)
  • [32] Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation
    Yang, Xiaolong
    Qian, Fangfang
    Zou, Guojun
    Li, Mengli
    Lu, Jinren
    Li, Yiming
    Bao, Mutai
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 193 : 22 - 35
  • [33] Fe-doped CdS with sulfonated g-C3N4 in a heterojunction designed for improved biomedical and photocatalytic potentials
    Iftikhar, Afsah
    Javed, Mohsin
    Mansoor, Sana
    Mahmood, Sajid
    Iqbal, Shahid
    Aslam, Muhammad
    Jazaa, Yosef
    Alshalwi, Matar
    Lateef, Mehreen
    Habib, Farzana
    Habibullah, Khansa
    Bahadur, Ali
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 162
  • [34] Facile fabrication of CeF3/g-C3N4 heterojunction photocatalysts with upconversion properties for enhanced photocatalytic desulfurization performance
    Lu, Xiaowang
    Chen, Feng
    Qian, Junchao
    Fu, Meng
    Jiang, Qiong
    Zhang, Qinfang
    JOURNAL OF RARE EARTHS, 2021, 39 (10) : 1204 - 1210
  • [35] Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue
    Dou, Tianwei
    Zang, Linlin
    Zhang, Yanhong
    Sun, Zhiyao
    Sun, Liguo
    Wang, Cheng
    MATERIALS LETTERS, 2019, 244 : 151 - 154
  • [36] Copper atom-doped g-C3N4 nanocomposites for enhanced photocatalytic degradation of tetracycline
    Yan, Changwang
    Zou, Jing
    He, Li
    Jin, Wanhui
    Yu, Qian
    Yu, Jing
    Zhao, Zhong
    Cai, Guangming
    Cheng, Deshan
    Wang, Xin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 679
  • [37] TiO2/BP/g-C3N4 heterojunction photocatalyst for the enhanced photocatalytic degradation of RhB
    Liu, Shujian
    Ge, Yanqing
    Wang, Chi
    Li, Kai
    Mei, Yi
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (35) : 84452 - 84461
  • [38] Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation
    Liu, Ning
    Lu, Na
    Su, Yan
    Wang, Pu
    Quan, Xie
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 211 : 782 - 789
  • [39] Facile fabrication of g-C3N4/SnO2 composites and ball milling treatment for enhanced photocatalytic performance
    Zhu, Kaixing
    Lv, Yang
    Liu, Jing
    Wang, Wenjun
    Wang, Chunping
    Li, Songmei
    Wang, Peng
    Zhang, Meng
    Meng, Alan
    Li, Zhenjiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 802 : 13 - 18
  • [40] Synthesis of g-C3N4/ZnO nanostructures via mechano-thermal method for photocatalytic degradation of methylene blue dye
    Meena, P. L.
    Poswal, K.
    Surela, A. K.
    Saini, J. K.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2025, 22 (02) : 833 - 848