共 50 条
Facile fabrication of CdS/Cu-doped g-C3N4 heterojunction for enhanced photocatalytic degradation of methylene blue
被引:4
|作者:
Li, Cuilin
[1
]
Zhai, Qianqian
[1
]
Liu, Wenqing
[1
]
Yang, Quanlu
[1
]
Li, Qiao
[1
]
Zhang, Xinghui
[1
]
机构:
[1] Lanzhou Univ Art & Sci, Coll Chem Engn, Beimiantan 400, Lanzhou 730000, Gansu, Peoples R China
关键词:
GRAPHITIC CARBON NITRIDE;
VISIBLE-LIGHT;
SUPRAMOLECULAR NETWORK;
HYDROGEN-PRODUCTION;
H-2;
PRODUCTION;
COMPOSITES;
NANOSHEETS;
CU;
CO;
PHOTODEGRADATION;
D O I:
10.1007/s10854-023-11055-9
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
A semiconductor photocatalyst serves as the primary component in photocatalytic oxidation. Scientists are known to be working on modifying existing catalysts and developing new efficient photocatalysts. In recent years, g-C3N4 has attracted wide attention due to its high stability, non-toxicity, cost-effectiveness, and adjustable band-gap energy. However, g-C3N4 also has shortcomings such as ineffcient visible light absorption, a high recombination rate of photoinduced electrons and holes and low quantum efficiency, which significantly restrict its photocatalytic activity. Here, an innovative ternary composite photocatalyst CdS@Cu/g-C3N4 has been successfully fabricated using a simple method, and the photocatalytic degradation of methylene blue (MB) by the CdS@Cu/g-C3N4 composite photocatalyst was also studied. Systematic studies showed that the photocatalytic degradation rate of CdS@Cu/g-C3N4 on MB reached 85.19% within 20 min, which was 2.58 and 1.88 times higher than that of CdS and g-C3N4, respectively. Free radical capture experiments showed that & BULL;O-2(-) plays a significant role during the photocatalytic process. It is postulated that a type II heterojunction might be formed between CdS and g-C3N4, effectively restricting photoinduced carrier recombination and enhancing visible light absorption. Cu doping changes the optical properties, affects the energy band structure of g-C3N4, increases the efficiency of electron transfer and improves the electron/hole separation rate, which helps to improve the photocatalytic activity. This work provides a valuable strategy to improve the photocatalytic performance of g-C3N4.
引用
收藏
页数:15
相关论文