DeepSAT: Learning Molecular Structures from Nuclear Magnetic Resonance Data

被引:15
作者
Kim, Hyun Woo [1 ,2 ]
Zhang, Chen [1 ,3 ]
Reher, Raphael [1 ,4 ]
Wang, Mingxun [5 ,6 ,7 ]
Alexander, Kelsey L. [1 ,8 ]
Nothias, Louis-Felix [9 ]
Han, Yoo Kyong [10 ]
Shin, Hyeji [10 ]
Lee, Ki Yong [1 ,10 ]
Lee, Kyu Hyeong [2 ]
Kim, Myeong Ji [2 ]
Dorrestein, Pieter C. [5 ]
Gerwick, William H. [1 ,5 ]
Cottrell, Garrison W. [3 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA
[2] Dongguk Univ Seoul, Integrated Res Inst Drug Dev, Coll Pharm, Seoul, Gyeonggi Do, South Korea
[3] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA 92093 USA
[4] Univ Marburg, Inst Pharmaceut Biol & Biotechnol, Marburg, Germany
[5] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[6] Ometa Labs LLC, San Diego, CA USA
[7] Univ Calif Riverside, Dept Comp Sci, Riverside, CA USA
[8] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA USA
[9] Univ Cote Azur, Inst Chim Nice, UMR 7272, CNRS, F-06108 Nice, France
[10] Korea Univ, Coll Pharm, Sejong, South Korea
基金
美国国家卫生研究院; 新加坡国家研究基金会;
关键词
Convolutional neural network; Nuclear magnetic resonance; Structure prediction; STRUCTURE ELUCIDATION; MASS-SPECTROMETRY; NMR DATABASE; METABOLOMICS; DISCOVERY;
D O I
10.1186/s13321-023-00738-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The identification of molecular structure is essential for understanding chemical diversity and for developing drug leads from small molecules. Nevertheless, the structure elucidation of small molecules by Nuclear Magnetic Resonance (NMR) experiments is often a long and non-trivial process that relies on years of training. To achieve this process efficiently, several spectral databases have been established to retrieve reference NMR spectra. However, the number of reference NMR spectra available is limited and has mostly facilitated annotation of commercially available derivatives. Here, we introduce DeepSAT, a neural network-based structure annotation and scaffold prediction system that directly extracts the chemical features associated with molecular structures from their NMR spectra. Using only the H-1-C-13 HSQC spectrum, DeepSAT identifies related known compounds and thus efficiently assists in the identification of molecular structures. DeepSAT is expected to accelerate chemical and biomedical research by accelerating the identification of molecular structures.
引用
收藏
页数:12
相关论文
共 42 条
  • [1] SAPOGENINS FROM GUAIACUM-OFFICINALE
    AHMAD, VU
    BANO, N
    BANO, S
    [J]. PHYTOCHEMISTRY, 1984, 23 (11) : 2613 - 2616
  • [2] Natural products in drug discovery: advances and opportunities
    Atanasov, Atanas G.
    Zotchev, Sergey B.
    Dirsch, Verena M.
    Supuran, Claudiu T.
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2021, 20 (03) : 200 - 216
  • [3] Super Natural II-a database of natural products
    Banerjee, Priyanka
    Erehman, Jevgeni
    Gohlke, Bjoern-Oliver
    Wilhelm, Thomas
    Preissner, Robert
    Dunkel, Mathias
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D935 - D939
  • [4] Unified and Isomer-Specific NMR Metabolomics Database for the Accurate Analysis of 13C-1H HSQC Spectra
    Bingol, Kerem
    Li, Da-Wei
    Bruschweiler-Li, Lei
    Cabrera, Oscar A.
    Megraw, Timothy
    Zhang, Fengli
    Brueschweiler, Rafael
    [J]. ACS CHEMICAL BIOLOGY, 2015, 10 (02) : 452 - 459
  • [5] antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline
    Blin, Kai
    Shaw, Simon
    Steinke, Katharina
    Villebro, Rasmus
    Ziemert, Nadine
    Lee, Sang Yup
    Medema, Marnix H.
    Weber, Tilmann
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) : W81 - W87
  • [6] The role of computer-assisted structure elucidation (CASE) programs in the structure elucidation of complex natural products
    Burns, Darcy C.
    Mazzola, Eugene P.
    Reynolds, William F.
    [J]. NATURAL PRODUCT REPORTS, 2019, 36 (06) : 919 - 933
  • [7] Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems
    Dias, Daniel A.
    Jones, Oliver A. H.
    Beale, David J.
    Boughton, Berin A.
    Benheim, Devin
    Kouremenos, Konstantinos A.
    Wolfender, Jean-Luc
    Wishart, David S.
    [J]. METABOLITES, 2016, 6 (04):
  • [8] MetFID: artificial neural network-based compound fingerprint prediction for metabolite annotation
    Fan, Ziling
    Alley, Amber
    Ghaffari, Kian
    Ressom, Habtom W.
    [J]. METABOLOMICS, 2020, 16 (10)
  • [9] EMPIRICAL NMR CHEMICAL-SHIFT CORRELATIONS FOR METHINE PROTONS
    FRIEDRICH, EC
    RUNKLE, KG
    [J]. JOURNAL OF CHEMICAL EDUCATION, 1986, 63 (02) : 127 - 129
  • [10] Hayamizu KY., 2015, OPEN ACCESS NMR DATA