Collaborative optimization of multi-microgrids system with shared energy storage based on multi-agent stochastic game and reinforcement learning

被引:14
作者
Wang, Yijian [1 ]
Cui, Yang [1 ]
Li, Yang [1 ]
Xu, Yang [1 ]
机构
[1] Northeast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
关键词
Partially observable dynamic stochastic game; Multi-agent reinforcement learning; Nonlinear conditions; Multi-microgrids; Shared energy storage; MANAGEMENT-SYSTEM; OPERATION; POWER; MODEL;
D O I
10.1016/j.energy.2023.128182
中图分类号
O414.1 [热力学];
学科分类号
摘要
Achieving the economical and stable operation of Multi-microgrids (MMG) systems is vital. However, there are still some challenging problems to be solved. Firstly, from the perspective of stable operation, it is necessary to minimize the energy fluctuation of the main grid. Secondly, the characteristics of energy conversion equipment need to be considered. Finally, privacy protection while reducing the operating cost of an MMG system is crucial. To address these challenges, a Data-driven strategy for MMG systems with Shared Energy Storage (SES) is proposed. In this paper, the Mixed-Attention is applied to fit the conditions of the equipment, and Multi-Agent Soft Actor-Critic(MA-SAC) , Multi-Agent Win or Learn Fast Policy Hill-Climbing (MA-WoLF-PHC) are proposed to solve the partially observable dynamic stochastic game problem. By testing the operation data of the MMG system in Northwest China, following conclusions are drawn: the R-Square (R2) values of results reach 0.999, indicating the neural network effectively models the nonlinear conditions. The proposed MMG system framework can reduce energy fluctuations in the main grid by 1746.5 kW in 24 h and achieve a cost reduction of 16.21% in the test. Finally, the superiority of the proposed algorithms is verified through their fast convergence speed and excellent optimization performance.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Hierarchical Architecture for Multi-Agent Reinforcement Learning in Intelligent Game
    Li, Bin
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [22] Dynamic Multi-Agent Reinforcement Learning for Control Optimization
    Fagan, Derek
    Meier, Rene
    PROCEEDINGS FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION, 2014, : 99 - 104
  • [23] Collaborative Information Dissemination with Graph-Based Multi-Agent Reinforcement Learning
    Galliera, Raffaele
    Venable, Kristen Brent
    Bassani, Matteo
    Suri, Niranjan
    ALGORITHMIC DECISION THEORY, ADT 2024, 2025, 15248 : 160 - 173
  • [24] Pursuit and evasion game between UVAs based on multi-agent reinforcement learning
    Xu, Guangyan
    Zhao, Yang
    Liu, Hao
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1261 - 1266
  • [25] Multi-agent deep reinforcement learning-based optimal energy management for grid-connected multiple energy carrier microgrids
    Monfaredi, Farzam
    Shayeghi, Hossein
    Siano, Pierluigi
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 153
  • [26] OptimizingMARL: Developing Cooperative Game Environments Based on Multi-agent Reinforcement Learning
    Ferreira, Thais
    Clua, Esteban
    Kohwalter, Troy Costa
    Santos, Rodrigo
    ENTERTAINMENT COMPUTING, ICEC 2022, 2022, 13477 : 89 - 102
  • [27] Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning
    Ding, Lifu
    Cui, Youkai
    Yan, Gangfeng
    Huang, Yaojia
    Fan, Zhen
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 157
  • [28] Measuring Collaborative Emergent Behavior in Multi-agent Reinforcement Learning
    Barton, Sean L.
    Waytowich, Nicholas R.
    Zaroukian, Erin
    Asher, Derrik E.
    HUMAN SYSTEMS ENGINEERING AND DESIGN, IHSED2018, 2019, 876 : 422 - 427
  • [29] Energy management of multi-microgrids based on game theory approach in the presence of demand response programs, energy storage systems and renewable energy resources
    Javanmard, Behzad
    Tabrizian, Mohammad
    Ansarian, Meghdad
    Ahmarinejad, Amir
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [30] Multi-agent hierarchical reinforcement learning for energy management
    Jendoubi, Imen
    Bouffard, Francois
    APPLIED ENERGY, 2023, 332