Computational Evaluation of the Effect of Build Orientation on Thermal Behavior and in-situ Martensite Decomposition for Laser Powder-Bed Fusion (LPBF) Process

被引:0
作者
Yildiz, Ayse Kubra [1 ]
Mollamahmutoglu, Mehmet [1 ]
Yilmaz, Oguzhan [1 ]
机构
[1] Gazi Univ, Fac Engn, Dept Mech Engn, Adv Mfg Technol Res Grp AMTRG, TR-06570 Ankara, Turkiye
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2023年 / 36卷 / 02期
关键词
Laser powder bed fusion; Ti6Al4V; Build orientation; Martensite decomposition; Modelling; MECHANICAL-PROPERTIES; MICROSTRUCTURE; TI-6AL-4V;
D O I
10.35378/gujs.1028004
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Laser powder bed fusion (LPBF), which is an additive manufacturing method, is a thermomechanical process in which instantaneously varying heat flow rates occur by moving a highintensity laser beam. The high temperatures and cooling rates that occur throughout the process result in microstructures with brittle behavior. The microstructure and mechanical properties may be improved by controlling the cooling rates in the layers via build orientation. Since the process is on a microscale, it requires planning as it does not allow instant intervention. Therefore, numerical analysis can be helpful to determine the effect of different build orientations. In this study, the effect of different build orientations was emphasized. For this purpose, successive layers resulting in narrowing and expanding cross-sectional areas were investigated with a detailed thermal approach. Also, a martensite decomposition case, as a result of changing the build orientation for a geometry, was presented numerically. As a result, it is shown that build orientation has an effect on the heat distribution within the part. Some benefits of expanding the cross-sectional area have been determined. Specifically, it is found that the build orientation may also enable local martensite decomposition, contributing to a lamellar microstructure.
引用
收藏
页码:870 / 880
页数:11
相关论文
共 50 条
  • [21] In-situ lock-in thermographic measurement of powder layer thermal diffusivity and thickness in laser powder bed fusion
    Liu, Tao
    Kinzel, Edward C.
    Leu, Ming C.
    ADDITIVE MANUFACTURING, 2023, 74
  • [22] In Situ Ageing with the Platform Preheating of AlSi10Mg Alloy Manufactured by Laser Powder-Bed Fusion Process
    Chambrin, Nicolas
    Dalverny, Olivier
    Cloue, Jean-Marc
    Brucelle, Olivier
    Alexis, Joel
    METALS, 2022, 12 (12)
  • [23] A novel machine learning-based approach for in-situ surface roughness prediction in laser powder-bed fusion
    Toorandaz, Sahar
    Taherkhani, Katayoon
    Liravi, Farima
    Toyserkani, Ehsan
    ADDITIVE MANUFACTURING, 2024, 91
  • [24] Effect of powder bed preheating on the crack formation and microstructure in ceramic matrix composites fabricated by laser powder-bed fusion process
    Maurya, H. S.
    Kosiba, K.
    Juhani, K.
    Sergejev, F.
    Prashanth, K. G.
    ADDITIVE MANUFACTURING, 2022, 58
  • [25] Effect of Build Orientation on the Microstructure, Mechanical and Corrosion Properties of a Biodegradable High Manganese Steel Processed by Laser Powder Bed Fusion
    Otto, Martin
    Pilz, Stefan
    Gebert, Annett
    Kuehn, Uta
    Hufenbach, Julia
    METALS, 2021, 11 (06)
  • [26] In-situ investigation into the deformation behavior of Ti-6Al-4V processed by laser powder bed fusion
    Liu, Jie
    Zhang, Kai
    Liu, Jianwen
    Xu, Yongfeng
    Zhang, Ruifeng
    Zeng, Zhuoran
    Zhu, Yuman
    Huang, Aijun
    MATERIALS CHARACTERIZATION, 2022, 194
  • [27] Effect of laser process parameters on thermal behavior and residual stress of high-strength aluminum alloy processed by laser powder bed fusion
    Qi, Shiwen
    Huang, Guangjing
    Xu, Xinran
    Zhang, Han
    Dai, Donghua
    Xi, Lixia
    Lin, Kaijie
    Gu, Dongdong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 3756 - 3768
  • [28] Effect of Sample-Build Orientation on the Tensile Deformation and Properties of Ti6Al4V Processed by Laser Powder Bed Fusion
    Sun, Shoujin
    Zhang, Duyao
    Palanisamy, Suresh
    Liu, Qianchu
    Schmidt, Michael
    Dargusch, Matthew S.
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (21)
  • [29] In-situ EBSD study of the coordinated deformation behavior of 2205 duplex stainless steel fabricated via laser powder bed fusion during the tensile process
    Zhao, Wei
    Xiang, Hongliang
    Zhan, Xianming
    Zhang, Xiangkai
    Wu, Chaochao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 901
  • [30] Oxidation behavior of Cu-Ag alloy in-situ manufactured via laser powder bed fusion
    Azizi, Nadia
    Asgari, Hamed
    Toyserkani, Ehsan
    ADDITIVE MANUFACTURING LETTERS, 2024, 10