The Simulated Source Apportionment of Light Absorbing Aerosols: Effects of Microphysical Properties of Partially-Coated Black Carbon

被引:8
作者
Luo, Jie [1 ,2 ]
Li, Zhengqiang [2 ,3 ]
Qiu, Jibing [1 ,4 ]
Zhang, Ying [2 ,3 ]
Fan, Cheng [2 ]
Li, Li [2 ]
Wu, Hailing [2 ,3 ]
Zhou, Peng [5 ]
Li, Kaitao [2 ]
Zhang, Qixing [6 ]
机构
[1] Zhejiang Lab, Hangzhou, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, State Environm Protect Key Lab Satellite Remote Se, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[5] Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo, Peoples R China
[6] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
source apportionment; light absorbing aerosols; microphysical properties; black carbon; ABSORPTION ANGSTROM EXPONENT; OPTICAL-PROPERTIES; ORGANIC-CARBON; BROWN CARBON; WAVELENGTH DEPENDENCE; SIZE DISTRIBUTION; SOOT PARTICLES; MORPHOLOGY; ENHANCEMENT; SCATTERING;
D O I
10.1029/2022JD037291
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Biomass burning (BB) fractions estimated with the aethalometer model differ from 0 even for pure aerosols from fossil fuel (FF) combustion. We used black carbon (BC) aerosols partially-coated with non-absorbing materials to represent typical FF aerosols, and the BB fractions were determined with the aethalometer model. Thus, the estimated BB fractions are the fractions that FF aerosols are incorrectly attributed to BB aerosols. The BC morphology and mixing state have significant effects on the estimation of BB fractions. For freshly emitted BC, the BB fractions do not deviate significantly from 0, and the BB fraction is generally in the range of -1%-10% based on an FF absorption Angstrom exponent (AAE) of 1 and a BB AAE of 2. The BB fraction deviates substantially from 0 when BC becomes compact and is coated. The absolute values of the deviations sometimes can be close to 100% for heavily coated BC. The BB fraction is generally greater than 0 for fluffy BC while compact BC generally exhibits a negative BB fraction. The BB fractions of partially-coated BC are very sensitive to the size distribution and coating ratio, which is consistent with the results of the core-shell sphere model. We have also performed a series of studies with different configurations for BC morphologies, coating ratios, and mixing states, which show the variations of the estimated BB fractions with atmospheric aging. We also explain the reasons for the uncertainties in the BB fraction estimates and provide suggestions for using different AAE pairs.
引用
收藏
页数:20
相关论文
共 74 条
  • [1] Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties
    Adachi, Kouji
    Chung, Serena H.
    Friedrich, Heiner
    Buseck, Peter R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D14)
  • [2] Shapes of soot aerosol particles and implications for their effects on climate
    Adachi, Kouji
    Chung, Serena H.
    Buseck, Peter R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [3] Effect of intrinsic organic carbon on the optical properties of fresh diesel soot
    Adler, Gabriella
    Riziq, Ali Abo
    Erlick, Carynelisa
    Rudich, Yinon
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (15) : 6699 - 6704
  • [4] Determining fractal properties of soot aggregates and primary particle size distribution in counterflow flames up to 10 atm
    Amin, Hafiz M. F.
    Bennett, Anthony
    Roberts, William L.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (01) : 1161 - 1168
  • [5] Consistency and Traceability of Black Carbon Measurements Made by Laser-Induced Incandescence, Thermal-Optical Transmittance, and Filter-Based Photo-Absorption Techniques
    不详
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2011, 45 (02) : 295 - 312
  • [6] Inferring absorbing organic carbon content from AERONET data
    Arola, A.
    Schuster, G.
    Myhre, G.
    Kazadzis, S.
    Dey, S.
    Tripathi, S. N.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (01) : 215 - 225
  • [7] Warming of the Arctic lower stratosphere by light absorbing particles
    Baumgardner, D
    Kok, G
    Raga, G
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (06)
  • [8] Spectral absorption properties of atmospheric aerosols
    Bergstrom, R. W.
    Pilewskie, P.
    Russell, P. B.
    Redemann, J.
    Bond, T. C.
    Quinn, P. K.
    Sierau, B.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (23) : 5937 - 5943
  • [9] Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations
    Bhandari, Janarjan
    China, Swarup
    Chandrakar, Kamal Kant
    Kinney, Greg
    Cantrell, Will
    Shaw, Raymond A.
    Mazzoleni, Lynn R.
    Girotto, Giulia
    Sharma, Noopur
    Gorkowski, Kyle
    Gilardoni, Stefania
    Decesari, Stefano
    Facchini, Maria Cristina
    Zanca, Nicola
    Pavese, Giulia
    Esposito, Francesco
    Dubey, Manvendra K.
    Aiken, Allison C.
    Chakrabarty, Rajan K.
    Moosmueller, Hans
    Onasch, Timothy B.
    Zaveri, Rahul A.
    Scarnato, Barbara, V
    Fialho, Paulo
    Mazzoleni, Claudio
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] Bounding the role of black carbon in the climate system: A scientific assessment
    Bond, T. C.
    Doherty, S. J.
    Fahey, D. W.
    Forster, P. M.
    Berntsen, T.
    DeAngelo, B. J.
    Flanner, M. G.
    Ghan, S.
    Kaercher, B.
    Koch, D.
    Kinne, S.
    Kondo, Y.
    Quinn, P. K.
    Sarofim, M. C.
    Schultz, M. G.
    Schulz, M.
    Venkataraman, C.
    Zhang, H.
    Zhang, S.
    Bellouin, N.
    Guttikunda, S. K.
    Hopke, P. K.
    Jacobson, M. Z.
    Kaiser, J. W.
    Klimont, Z.
    Lohmann, U.
    Schwarz, J. P.
    Shindell, D.
    Storelvmo, T.
    Warren, S. G.
    Zender, C. S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) : 5380 - 5552