QUALITATIVE ANALYSIS OF CERTAIN REACTION-DIFFUSION SYSTEMS OF THE FITZHUGH-NAGUMO TYPE

被引:3
|
作者
Ambrisio, B. [1 ,2 ]
机构
[1] Normandie Univ, UNIHAVRE, LMAH, FR CNRS 3335,ISCN, F-76600 Le Havre, France
[2] Hudson Sch Math, New York, NY 10001 USA
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2023年 / 12卷 / 06期
关键词
  Hopf bifurcation; reaction-diffusion; FizHugh-Nagumo; Liouville equa-tion; LaSalle's principle; NERVE AXON EQUATIONS; OSCILLATORY TAILS; HOMOCLINIC ORBITS; TRAVELING-WAVES; STABILITY; EXISTENCE; PROPAGATION; PULSES;
D O I
10.3934/eect.2023023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This article aims to provide insights into the qualitative analysis of some nonlinear Reaction-Diffusion (RD) systems arising in Neuroscience. We first introduce a non-homogeneous FitzHugh-Nagumo (nhFHN) featuring excitability and oscillatory properties. Then, we discuss the qualitative analysis of a toy model related to nhFHN. In particular, we focus on the convergence of solutions of the toy model toward different solutions (fixed point, periodic) and show the existence of a cascade of Hopf bifurcations. Finally, we connect this analysis to the nhFHN system.
引用
收藏
页码:1507 / 1526
页数:20
相关论文
共 50 条
  • [41] Bifurcation Analysis of Periodic Action Potentials of Nerve Cells in the FitzHugh-Nagumo Model
    Sultana, Nasrin
    Das, Sampad
    Gani, M. Osman
    2016 INTERNATIONAL CONFERENCE ON MEDICAL ENGINEERING, HEALTH INFORMATICS AND TECHNOLOGY (MEDITEC), 2016,
  • [42] OSCILLATORY DYNAMICS FOR A COUPLED MEMBRANE-BULK DIFFUSION MODEL WITH FITZHUGH-NAGUMO MEMBRANE KINETICS
    Gou, J.
    Ward, M. J.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (02) : 776 - 804
  • [43] Excitable FitzHugh-Nagumo model with cross-diffusion: long-range activation instabilities
    Gambino, G.
    Lombardo, M. C.
    Rizzo, R.
    Sammartino, M.
    RICERCHE DI MATEMATICA, 2024, 73 (SUPPL 1) : 115 - 135
  • [44] Stability analysis and rich oscillation patterns in discrete-time FitzHugh-Nagumo excitable systems with delayed coupling
    Wang, Xiujuan
    Peng, Mingshu
    Cheng, Ranran
    Yu, Jinchen
    NONLINEAR DYNAMICS, 2014, 78 (03) : 2085 - 2099
  • [45] RANDOM ATTRACTORS FOR STOCHASTIC FITZHUGH-NAGUMO SYSTEMS DRIVEN BY DETERMINISTIC NON-AUTONOMOUS FORCING
    Adili, Abiti
    Wang, Bixiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03): : 643 - 666
  • [46] Coherence resonance in a network of FitzHugh-Nagumo systems: Interplay of noise, time-delay, and topology
    Masoliver, Maria
    Malik, Nishant
    Schoell, Eckehard
    Zakharova, Anna
    CHAOS, 2017, 27 (10)
  • [47] Stability and bifurcation analysis of a reaction-diffusion equation with distributed delay
    Zuo, Wenjie
    Song, Yongli
    NONLINEAR DYNAMICS, 2015, 79 (01) : 437 - 454
  • [48] Travelling wave solutions for Kolmogorov-type delayed lattice reaction-diffusion systems
    Hsu, Cheng-Hsiung
    Lin, Jian-Jhong
    Yang, Ting-Hui
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (05) : 1336 - 1367
  • [49] Breathing pulses in singularly perturbed reaction-diffusion systems
    Veerman, Frits
    NONLINEARITY, 2017, 30 (03) : C1 - +
  • [50] Front propagation and blocking of reaction-diffusion systems in cylinders
    Guo, Hongjun
    Forbey, Jennifer
    Liu, Rongsong
    NONLINEARITY, 2021, 34 (10) : 6750 - 6772