QUALITATIVE ANALYSIS OF CERTAIN REACTION-DIFFUSION SYSTEMS OF THE FITZHUGH-NAGUMO TYPE

被引:3
|
作者
Ambrisio, B. [1 ,2 ]
机构
[1] Normandie Univ, UNIHAVRE, LMAH, FR CNRS 3335,ISCN, F-76600 Le Havre, France
[2] Hudson Sch Math, New York, NY 10001 USA
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2023年 / 12卷 / 06期
关键词
  Hopf bifurcation; reaction-diffusion; FizHugh-Nagumo; Liouville equa-tion; LaSalle's principle; NERVE AXON EQUATIONS; OSCILLATORY TAILS; HOMOCLINIC ORBITS; TRAVELING-WAVES; STABILITY; EXISTENCE; PROPAGATION; PULSES;
D O I
10.3934/eect.2023023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This article aims to provide insights into the qualitative analysis of some nonlinear Reaction-Diffusion (RD) systems arising in Neuroscience. We first introduce a non-homogeneous FitzHugh-Nagumo (nhFHN) featuring excitability and oscillatory properties. Then, we discuss the qualitative analysis of a toy model related to nhFHN. In particular, we focus on the convergence of solutions of the toy model toward different solutions (fixed point, periodic) and show the existence of a cascade of Hopf bifurcations. Finally, we connect this analysis to the nhFHN system.
引用
收藏
页码:1507 / 1526
页数:20
相关论文
共 50 条
  • [31] Speed of traveling waves for monotone reaction-diffusion systems as a function of diffusion coefficients
    Kazmierczak, Bogdan
    Sneyd, James
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 424
  • [32] Dynamics for stochastic Fitzhugh-Nagumo systems with general multiplicative noise on thin domains
    Li, Fuzhi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 5050 - 5078
  • [33] Stability and convergence analysis of Fourier pseudo-spectral method for FitzHugh-Nagumo model
    Zhang, Jun
    Lin, Shimin
    Wang, JinRong
    APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 563 - 578
  • [34] Spectral comparison and gradient-like property in the FitzHugh-Nagumo type equations
    Chen, Chao-Nien
    Jimbo, Shuichi
    Morita, Yoshihisa
    NONLINEARITY, 2015, 28 (04) : 1003 - 1016
  • [35] Qualitative analysis of a reaction-diffusion system
    Wang, MX
    Chen, YL
    APPLIED MATHEMATICS LETTERS, 2005, 18 (02) : 199 - 203
  • [36] Random attractors of FitzHugh-Nagumo systems driven by colored noise on unbounded domains
    Gu, Anhui
    Wang, Bixiang
    STOCHASTICS AND DYNAMICS, 2019, 19 (05)
  • [37] Leap-frog patterns in systems of two coupled FitzHugh-Nagumo units
    Eydam, Sebastian
    Franovic, Igor
    Wolfrum, Matthias
    PHYSICAL REVIEW E, 2019, 99 (04)
  • [38] SECOND ORDER AND STABILITY ANALYSIS FOR OPTIMAL SPARSE CONTROL OF THE FITZHUGH-NAGUMO EQUATION
    Casas, Eduardo
    Ryll, Christopher
    Troeltzsch, Fredi
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (04) : 2168 - 2202
  • [39] Dynamical Analysis of Coupled Bidirectional FitzHugh-Nagumo Neuronal Networks With Multiple Delays
    Mao, Xiaochen
    Zhou, Xiangyu
    Shi, Tiantian
    Qiao, Lei
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (06):
  • [40] Traveling waves of delayed reaction-diffusion systems with applications
    Yu, Zhi-Xian
    Yuan, Rong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2475 - 2488