Quantum-classical correspondence of strongly chaotic many-body spin models

被引:6
作者
Benet, Luis [1 ]
Borgonovi, Fausto [2 ,3 ,4 ]
Izrailev, Felix M. [5 ,6 ]
Santos, Lea F. [7 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Av Univ s-n, Cuernavaca 62210, Mor, Mexico
[2] Univ Cattolica, Dipartimento Matemat & Fis, via Garzetta 48, I-25133 Brescia, Italy
[3] Univ Cattolica, Interdisciplinary Labs Adv Mat Phys, via Garzetta 48, I-25133 Brescia, Italy
[4] Ist Nazl Fis Nucl, Sez Milano, via Celoria 16, I-20133 Milan, Italy
[5] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[6] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[7] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
ENTANGLEMENT ENTROPY; STATISTICAL-THEORY; SHELL-MODEL; LOCALIZATION; SYSTEMS; SPECTRUM; THERMALIZATION; STOCHASTICITY; FLUCTUATIONS; PROPAGATION;
D O I
10.1103/PhysRevB.107.155143
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the quantum-classical correspondence for systems with interacting spin particles that are strongly chaotic in the classical limit. This is done in the presence of constants of motion associated with the fixed angular momenta of individual spins. Our analysis of the Lyapunov spectra reveals that the largest Lyapunov exponent agrees with the Lyapunov exponent that determines the local instability of each individual spin moving under the influence of all other spins. Within this picture, we introduce a rigorous and simple test of ergodicity for the spin motion, and use it to identify when classical chaos is both strong and global in phase space. In the quantum domain, our analysis of the Hamiltonian matrix in a proper representation allows us to obtain the conditions for the onset of quantum chaos as a function of the model parameters. From the comparison between the quantum and classical domains, we demonstrate that quantum quantities, such as the local density of states (LDoS) and the shape of the chaotic eigenfunctions written in the noninteracting many-body basis, have well-defined classical counterparts. We also find a relationship between the Kolmogorov-Sinai entropy and the width of the LDoS, which is useful for studies of many-body dynamics.
引用
收藏
页数:16
相关论文
共 106 条
[1]   Semiclassical prediction of large spectral fluctuations in interacting kicked spin chains [J].
Akila, Maram ;
Gutkin, Boris ;
Braun, Petr ;
Waltner, Daniel ;
Guhr, Thomas .
ANNALS OF PHYSICS, 2018, 389 :250-282
[2]   Semiclassical Identification of Periodic Orbits in a Quantum Many-Body System [J].
Akila, Maram ;
Waltner, Daniel ;
Gutkin, Boris ;
Braun, Petr ;
Guhr, Thomas .
PHYSICAL REVIEW LETTERS, 2017, 118 (16)
[3]  
[Anonymous], 1960, J. Nucl. Energy, DOI DOI 10.1088/0368-3281/1/4/311
[4]  
[Anonymous], 2010, Quantum signatures of chaos, DOI DOI 10.1007/978-3-642-05428-0
[5]   Entanglement entropy converges to classical entropy around periodic orbits [J].
Asplund, Curtis T. ;
Berenstein, David .
ANNALS OF PHYSICS, 2016, 366 :113-132
[6]   Semiclassical properties of eigenfunctions and occupation number distribution for a model of two interacting particles [J].
Benet, L ;
Izrailev, FM ;
Seligman, TH ;
Suárez-Moreno, A .
PHYSICS LETTERS A, 2000, 277 (02) :87-93
[7]   Wigner-Dyson statistics for a class of integrable models [J].
Benet, L ;
Leyvraz, F ;
Seligman, TH .
PHYSICAL REVIEW E, 2003, 68 (04) :452011-452013
[8]   Fluctuations of wavefunctions about their classical average [J].
Benet, L ;
Flores, J ;
Hernández-Saldaña, H ;
Izrailev, FM ;
Leyvraz, F ;
Seligman, TH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (05) :1289-1297
[9]   Delocalization border and onset of chaos in a model of quantum computation [J].
Berman, GP ;
Borgonovi, F ;
Izrailev, FM ;
Tsifrinovich, VI .
PHYSICAL REVIEW E, 2001, 64 (05) :14-056226
[10]   CONDITION OF STOCHASTICITY IN QUANTUM NON-LINEAR SYSTEMS [J].
BERMAN, GP ;
ZASLAVSKY, GM .
PHYSICA A, 1978, 91 (3-4) :450-460