A Polarimetric Decomposition and Copula Quantile Regression Approach for Soil Moisture Estimation From Radarsat-2 Data Over Vegetated Areas

被引:5
作者
Zhang, Li [1 ,2 ]
Wang, Rui [1 ,2 ]
Chai, Huiming [1 ]
Lv, Xiaolei [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Technol GeoSpatial Informat Proc & Applica, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
Estimation; Vegetation mapping; Synthetic aperture radar; Soil moisture; Remote sensing; Probabilistic logic; Backscatter; Copula; corn-covered areas; polarimetric decomposition; surface soil moisture (SSM); OPTICAL TRAPEZOID MODEL; SURFACE-ROUGHNESS; RETRIEVAL; SCATTERING; BACKSCATTERING; PREDICTION; PARAMETERS; EMISSION; DYNAMICS; WATER;
D O I
10.1109/JSTARS.2023.3262194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a novel framework for probabilistic estimation of surface soil moisture (SSM) based on polarimetric decomposition and copula quantile regression, mainly focusing on solving the low correlation between synthetic aperture radar (SAR) backscattering coefficients and SSM in corn-covered areas. Cloude-Pottier decomposition and adaptive nonnegative eigenvalue decomposition can extract more polarization parameters, explaining the implicit information in polarization data from different theoretical levels. Polarization parameters and the backscattering coefficients for different polarizations constitute predictor variable parameters for estimating the SSM. The dimensionality of the predictor variable parameters is reduced by supervised principal component analysis to derive the first principal component. SPCA ensures a high correlation between the first principal component and the SSM. Finally, the Archimedes copula function simply and effectively constructs the nonlinear relationship between SSM and the first principal component to complete the quantile regression estimation of SSM. Results show that the root-mean-square error range of SSM estimation is 0.039-0.078 cm(3)/cm(3) and the correlation coefficient (R) is 0.401-0.761. In addition, copula quantile regression constructs an uncertainty range for the SSM estimate, which can be used to judge the reliability of the estimate.
引用
收藏
页码:3405 / 3417
页数:13
相关论文
共 50 条
[41]   A method to obtain soil-moisture estimates over bare agricultural fields in arid areas by using multi-angle RADARSAT-2 data [J].
JunZhan Wang ;
JianJun Qu ;
LiHai Tan ;
KeCun Zhang .
Sciences in Cold and Arid Regions, 2018, 10 (02) :145-150
[42]   A method to obtain soil-moisture estimates over bare agricultural fields in arid areas by using multi-angle RADARSAT-2 data [J].
Wang, JunZhan ;
Qu, JianJun ;
Tan, LiHai ;
Zhang, KeCun .
SCIENCES IN COLD AND ARID REGIONS, 2018, 10 (02) :145-150
[43]   Estimate the soil moisture over Semi-arid Region of Loess Plateau using Radarsat-2 SAR data [J].
Hu, D. ;
Guo, N. ;
Wang, L. J. ;
Sha, S. .
LAND SURFACE REMOTE SENSING II, 2014, 9260
[44]   Refining a Polarimetric Decomposition of Multi-Angular UAVSAR Time Series for Soil Moisture Retrieval Over Low and High Vegetated Agricultural Fields [J].
Wang, Hongquan ;
Magagi, Ramata ;
Goita, Kalifa ;
Jagdhuber, Thomas .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) :1431-1450
[45]   A Soil Moisture Retrieval Method Based on Typical Polarization Decomposition Techniques for a Maize Field from Full-Polarization Radarsat-2 Data [J].
Xie, Qiuxia ;
Meng, Qingyan ;
Zhang, Linlin ;
Wang, Chunmei ;
Sun, Yunxiao ;
Sun, Zhenhui .
REMOTE SENSING, 2017, 9 (02)
[46]   Soil Moisture Retrieval from Microwave (RADARSAT-2) and Optical Remote Sensing (MODIS) Data Using Artificial Intelligence Techniques [J].
Jahan, Nasreen ;
Gan, Thian Yew .
REMOTE SENSING OF THE TERRESTRIAL WATER CYCLE, 2015, 206 :255-275
[47]   Analysis of Polarimetric Radar Data and Soil Moisture From Aquarius: Towards a Regression-Based Soil Moisture Estimation Algorithm [J].
Burgin, Mariko S. ;
van Zyl, Jakob J. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (08) :3497-3504
[48]   Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data [J].
Moradizadeh, Mina ;
Saradjian, Mohammad R. .
JOURNAL OF EARTH SYSTEM SCIENCE, 2018, 127 (02)
[49]   SOIL MOISTURE RETRIEVAL USING MODIFIED VEGETATION BACKSCATTERING MODEL BASED ON RADARSAT-2 DATA [J].
Tao, Liangliang ;
Wang, Guojie ;
He, Shi ;
Chen, Xi .
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, :9102-9105
[50]   SOIL MOISTURE RETRIEVAL USING RADARSAT-2 AND HJ-1 CCD DATA IN GRASSLAND [J].
Xing, Minfeng ;
He, Binbin ;
Li, Xiaowen ;
Quan, Xingwen .
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,