A Polarimetric Decomposition and Copula Quantile Regression Approach for Soil Moisture Estimation From Radarsat-2 Data Over Vegetated Areas

被引:4
作者
Zhang, Li [1 ,2 ]
Wang, Rui [1 ,2 ]
Chai, Huiming [1 ]
Lv, Xiaolei [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Technol GeoSpatial Informat Proc & Applica, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
Estimation; Vegetation mapping; Synthetic aperture radar; Soil moisture; Remote sensing; Probabilistic logic; Backscatter; Copula; corn-covered areas; polarimetric decomposition; surface soil moisture (SSM); OPTICAL TRAPEZOID MODEL; SURFACE-ROUGHNESS; RETRIEVAL; SCATTERING; BACKSCATTERING; PREDICTION; PARAMETERS; EMISSION; DYNAMICS; WATER;
D O I
10.1109/JSTARS.2023.3262194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a novel framework for probabilistic estimation of surface soil moisture (SSM) based on polarimetric decomposition and copula quantile regression, mainly focusing on solving the low correlation between synthetic aperture radar (SAR) backscattering coefficients and SSM in corn-covered areas. Cloude-Pottier decomposition and adaptive nonnegative eigenvalue decomposition can extract more polarization parameters, explaining the implicit information in polarization data from different theoretical levels. Polarization parameters and the backscattering coefficients for different polarizations constitute predictor variable parameters for estimating the SSM. The dimensionality of the predictor variable parameters is reduced by supervised principal component analysis to derive the first principal component. SPCA ensures a high correlation between the first principal component and the SSM. Finally, the Archimedes copula function simply and effectively constructs the nonlinear relationship between SSM and the first principal component to complete the quantile regression estimation of SSM. Results show that the root-mean-square error range of SSM estimation is 0.039-0.078 cm(3)/cm(3) and the correlation coefficient (R) is 0.401-0.761. In addition, copula quantile regression constructs an uncertainty range for the SSM estimate, which can be used to judge the reliability of the estimate.
引用
收藏
页码:3405 / 3417
页数:13
相关论文
共 50 条
[31]   RADARSAT-2 AND TERRASAR-X POLARIMETRIC DATA FOR CROP GROWTH STAGES ESTIMATION [J].
Li, Yifeng ;
Lampropoulos, George .
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, :4510-4513
[32]   SOIL MOISTURE RETRIEVAL IN WELL COVERED FARMLAND BY RADARSAT-2 SAR DATA [J].
Yue, Jibo ;
Yang, Guijun ;
Qi, Xiudong ;
Wang, Yanjie .
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, :1699-1702
[33]   Retrieval of Marine Surface Slick Dielectric Properties From Radarsat-2 Data via a Polarimetric Two-Scale Model [J].
Quigley, Cornelius ;
Brekke, Camilla ;
Eltoft, Torbjorn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07) :5162-5178
[34]   Using Generalized Regression Neural Network to Retrieve Bare Surface Soil Moisture From Radarsat-2 Backscatter Observations, Regardless of Roughness Effect [J].
Zeng, Ling ;
Liu, Quanming ;
Jing, Linhai ;
Lan, Ling ;
Feng, Jun .
FRONTIERS IN EARTH SCIENCE, 2021, 9
[35]   Implementation of a multiangle soil moisture retrieval model using RADARSAT-2 imagery over arid Juyanze, northwest China [J].
Yang, Liping ;
Li, Yanfei ;
Li, Qi ;
Sun, Xiaohui ;
Kong, Jinling ;
Wang, Le .
JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
[36]   SENSITIVITY OF RADARSAT-2 QUAD POLARIMETRIC AND SIMULATED COMPACT POLARIMETRIC PARAMETERS TO SOIL MOISTURE AND FREEZE/THAW STATE IN SOUTHWEST ONTARIO [J].
Tang, Wen ;
Kelly, Richard .
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
[37]   Retrieving Surface Soil Moisture over Wheat and Soybean Fields during Growing Season Using Modified Water Cloud Model from Radarsat-2 SAR Data [J].
Xing, Minfeng ;
He, Binbin ;
Ni, Xiliang ;
Wang, Jinfei ;
An, Gangqiang ;
Shang, Jiali ;
Huang, Xiaodong .
REMOTE SENSING, 2019, 11 (16)
[38]   Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data [J].
Nurtyawan, R. ;
Saepuloh, A. ;
Budiharto, A. ;
Wikantika, K. .
6TH ASIAN PHYSICS SYMPOSIUM, 2016, 739
[39]   Surface roughness estimation from RADARSAT-2 data in a High Arctic environment [J].
Collingwood, Adam ;
Treitz, Paul ;
Charbonneau, Francois .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 27 :70-80
[40]   POLARIMETRIC DECOMPOSITION OF C-BAND SAR DATA FOR SOIL MOISTURE RETRIEVAL OVER AGRICULTURAL FIELDS [J].
Wang, Hongquan ;
Magagi, Ramata ;
Goita, Kalifa .
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, :1687-1690