A Polarimetric Decomposition and Copula Quantile Regression Approach for Soil Moisture Estimation From Radarsat-2 Data Over Vegetated Areas

被引:5
作者
Zhang, Li [1 ,2 ]
Wang, Rui [1 ,2 ]
Chai, Huiming [1 ]
Lv, Xiaolei [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Technol GeoSpatial Informat Proc & Applica, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
Estimation; Vegetation mapping; Synthetic aperture radar; Soil moisture; Remote sensing; Probabilistic logic; Backscatter; Copula; corn-covered areas; polarimetric decomposition; surface soil moisture (SSM); OPTICAL TRAPEZOID MODEL; SURFACE-ROUGHNESS; RETRIEVAL; SCATTERING; BACKSCATTERING; PREDICTION; PARAMETERS; EMISSION; DYNAMICS; WATER;
D O I
10.1109/JSTARS.2023.3262194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a novel framework for probabilistic estimation of surface soil moisture (SSM) based on polarimetric decomposition and copula quantile regression, mainly focusing on solving the low correlation between synthetic aperture radar (SAR) backscattering coefficients and SSM in corn-covered areas. Cloude-Pottier decomposition and adaptive nonnegative eigenvalue decomposition can extract more polarization parameters, explaining the implicit information in polarization data from different theoretical levels. Polarization parameters and the backscattering coefficients for different polarizations constitute predictor variable parameters for estimating the SSM. The dimensionality of the predictor variable parameters is reduced by supervised principal component analysis to derive the first principal component. SPCA ensures a high correlation between the first principal component and the SSM. Finally, the Archimedes copula function simply and effectively constructs the nonlinear relationship between SSM and the first principal component to complete the quantile regression estimation of SSM. Results show that the root-mean-square error range of SSM estimation is 0.039-0.078 cm(3)/cm(3) and the correlation coefficient (R) is 0.401-0.761. In addition, copula quantile regression constructs an uncertainty range for the SSM estimate, which can be used to judge the reliability of the estimate.
引用
收藏
页码:3405 / 3417
页数:13
相关论文
共 50 条
[21]   SURFACE PARAMETERS ESTIMATION USING RADARSAT-2 POLARIMETRIC DATA OVER WHEAT COVERED AREA [J].
Chen, Quan ;
Li, Zhen ;
Cai, Aimin ;
Tian, Bangsen .
2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, :4843-4846
[22]   Mapping Soil Moisture Using RADARSAT-2 Data and Local Autocorrelation Statistics [J].
Merzouki, Amine ;
McNairn, Heather ;
Pacheco, Anna .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (01) :128-137
[23]   Spatiotemporal Variability of Arctic Soil Moisture Detected from High-Resolution RADARSAT-2 SAR Data [J].
Collingwood, Adam ;
Charbonneau, Francois ;
Shang, Chen ;
Treitz, Paul .
ADVANCES IN METEOROLOGY, 2018, 2018
[24]   Estimation of Soil Moisture from Multi-Polarized Synthetic Aperture Radar Data-A Case Examination on RADARSAT-2 Product Over Wheat Growing Areas [J].
Yang, Guijun ;
Shi, Yuechan ;
Xu, Qingyun .
SENSOR LETTERS, 2013, 11 (6-7) :1081-1086
[25]   Retrieving topsoil moisture using RADARSAT-2 data, a novel approach applied at the east of the Netherlands [J].
Eweys, Omar Ali ;
Elwan, Abeer A. ;
Borham, Taha I. .
JOURNAL OF HYDROLOGY, 2017, 555 :670-682
[26]   Soil moisture estimation over vegetated terrains using multitemporal remote sensing data [J].
Pierdicca, Nazzareno ;
Pulvirenti, Luca ;
Bignami, Christian .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (02) :440-448
[27]   Surface Soil Moisture Estimation from Time Series of RADARSAT Constellation Mission Compact Polarimetric Data for the Identification of Water-Saturated Areas [J].
Zakharov, Igor ;
Kohlsmith, Sarah ;
Hornung, Jon ;
Charbonneau, Francois ;
Bobby, Pradeep ;
Howell, Mark .
REMOTE SENSING, 2024, 16 (14)
[28]   Digital Mapping of Soil Texture Using RADARSAT-2 Polarimetric Synthetic Aperture Radar Data [J].
Niang, Mohamed A. ;
Nolin, Michel C. ;
Jego, Guillaume ;
Perron, Isabelle .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2014, 78 (02) :673-684
[29]   All-Sky Soil Moisture Estimation over Agriculture Areas from the Full Polarimetric SAR GF-3 Data [J].
Luo, Dayou ;
Wen, Xingping ;
Xu, Junlong .
SUSTAINABILITY, 2022, 14 (17)
[30]   Snow Cover Extraction in Mountain Areas Using RadarSat-2 Polarimetric SAR data [J].
He, G. J. ;
Jiang, J. X. ;
Xia, Z. H. ;
Hao, Y. ;
Xiao, P. F. ;
Feng, X. Z. ;
Wang, Z. .
PROCEEDINGS OF 2016 16TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR (GPR), 2016,