A Polarimetric Decomposition and Copula Quantile Regression Approach for Soil Moisture Estimation From Radarsat-2 Data Over Vegetated Areas

被引:3
|
作者
Zhang, Li [1 ,2 ]
Wang, Rui [1 ,2 ]
Chai, Huiming [1 ]
Lv, Xiaolei [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Technol GeoSpatial Informat Proc & Applica, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
Estimation; Vegetation mapping; Synthetic aperture radar; Soil moisture; Remote sensing; Probabilistic logic; Backscatter; Copula; corn-covered areas; polarimetric decomposition; surface soil moisture (SSM); OPTICAL TRAPEZOID MODEL; SURFACE-ROUGHNESS; RETRIEVAL; SCATTERING; BACKSCATTERING; PREDICTION; PARAMETERS; EMISSION; DYNAMICS; WATER;
D O I
10.1109/JSTARS.2023.3262194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a novel framework for probabilistic estimation of surface soil moisture (SSM) based on polarimetric decomposition and copula quantile regression, mainly focusing on solving the low correlation between synthetic aperture radar (SAR) backscattering coefficients and SSM in corn-covered areas. Cloude-Pottier decomposition and adaptive nonnegative eigenvalue decomposition can extract more polarization parameters, explaining the implicit information in polarization data from different theoretical levels. Polarization parameters and the backscattering coefficients for different polarizations constitute predictor variable parameters for estimating the SSM. The dimensionality of the predictor variable parameters is reduced by supervised principal component analysis to derive the first principal component. SPCA ensures a high correlation between the first principal component and the SSM. Finally, the Archimedes copula function simply and effectively constructs the nonlinear relationship between SSM and the first principal component to complete the quantile regression estimation of SSM. Results show that the root-mean-square error range of SSM estimation is 0.039-0.078 cm(3)/cm(3) and the correlation coefficient (R) is 0.401-0.761. In addition, copula quantile regression constructs an uncertainty range for the SSM estimate, which can be used to judge the reliability of the estimate.
引用
收藏
页码:3405 / 3417
页数:13
相关论文
共 50 条
  • [1] Soil Moisture Estimation over Vegetated Agricultural Areas: Tigris Basin, Turkey from Radarsat-2 Data by Polarimetric Decomposition Models and a Generalized Regression Neural Network
    Ozerdem, Mehmet Sirac
    Acar, Emrullah
    Ekinci, Remzi
    REMOTE SENSING, 2017, 9 (04):
  • [2] Soil Moisture Estimation Based on Polarimetric Decomposition and Quantile Regression Forests
    Zhang, Li
    Lv, Xiaolei
    Wang, Rui
    REMOTE SENSING, 2022, 14 (17)
  • [3] Soil Moisture Retrieval of Vegetated Land Cover Using RADARSAT-2 Data
    Kumar, Vinay
    Ahmed, Tasneem
    Singh, Dharmendra
    2015 NATIONAL CONFERENCE ON RECENT ADVANCES IN ELECTRONICS & COMPUTER ENGINEERING (RAECE), 2015, : 276 - 281
  • [4] Polarimetric RADARSAT-2 imagery for soil moisture retrieval in alpine areas
    Pasolli, L.
    Notarnicola, C.
    Bruzzone, L.
    Bertoldi, G.
    Della Chiesa, S.
    Niedrist, G.
    Tappeiner, U.
    Zebisch, M.
    CANADIAN JOURNAL OF REMOTE SENSING, 2011, 37 (05) : 535 - 547
  • [5] LANDSLIDE PREDICTION USING SOIL MOISTURE ESTIMATION DERIVED FROM POLARIMETRIC RADARSAT-2 DATA AND SRTM
    Luo, Shiyu
    Sarabandi, Kamal
    Tong, Ling
    Pierce, Leland
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5386 - 5389
  • [6] ESTIMATION OF FUEL MOISTURE CONTENT BASED ON QUAD POLARIMETRIC DECOMPOSITION PARAMETERS OF RADARSAT-2 DATA
    Wang, Long
    He, Binbin
    Quan, Xingwen
    Xing, Minfeng
    Liu, Xiangzhuo
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9934 - 9937
  • [7] Spatial and temporal soil moisture estimation from RADARSAT-2 imagery over Flevoland, The Netherlands
    Lievens, Hans
    Verhoest, Niko E. C.
    JOURNAL OF HYDROLOGY, 2012, 456 : 44 - 56
  • [8] Soil Moisture Inversion Via Semiempirical and Machine Learning Methods With Full-Polarization Radarsat-2 and Polarimetric Target Decomposition Data: A Comparative Study
    Acar, Huseyin
    Ozerdem, Mehmet Sirac
    Acar, Emrullah
    IEEE ACCESS, 2020, 8 : 197896 - 197907
  • [9] POTENTIAL USE OF RADARSAT-2 POLARIMETRIC PARAMETERS FOR ESTIMATING SOIL MOISTURE IN PRAIRIE AREAS
    Bai, Xiaojing
    He, Binbin
    Xu, Dasong
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3043 - 3046
  • [10] Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields
    Trudel, Melanie
    Charbonneau, Francois
    Leconte, Robert
    CANADIAN JOURNAL OF REMOTE SENSING, 2012, 38 (04) : 514 - 527