INVARIANCE PRINCIPLES FOR INTEGRATED RANDOM WALKS CONDITIONED TO STAY POSITIVE

被引:0
|
作者
Baer, Michael [1 ]
Duraj, Jetlir [2 ]
Wachtel, Vitali [3 ]
机构
[1] MSG Syst AG, Ismaning, Germany
[2] Univ Pittsburgh, Dept Econ, Pittsburgh, PA USA
[3] Bielefeld Univ, Fac Math, Bielefeld, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 01期
关键词
Random walk harmonic function; invariance principle; h-transform; Kolmogorov diffusion; PERSISTENCE PROBABILITIES;
D O I
10.1214/22-AAP1811
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let S (n) be a centered random walk with finite second moment. We con-sider the integrated random walk T (n) = S(0) + S(1) + center dot center dot center dot + S(n). We prove invariance principles for the meander and for the bridge of this process, un-der the condition that the integrated random walk remains positive. Further-more, we prove the functional convergence of its Doob's h-transform to the h-transform of the Kolmogorov diffusion conditioned to stay positive.
引用
收藏
页码:127 / 160
页数:34
相关论文
共 50 条