Ramsey numbers of cycles versus general graphs

被引:10
作者
Haslegrave, John [1 ]
Hyde, Joseph [2 ]
Kim, Jaehoon [3 ]
Liu, Hong [4 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg, Oxford OX2 6GG, England
[2] Univ Victoria, Math & Stat, Victoria, BC V8W 2Y2, Canada
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[4] Inst Basic Sci IBS, Extremal Combinator & Probabil Grp ECOPRO, Daejeon, South Korea
基金
欧洲研究理事会; 英国科研创新办公室;
关键词
05C55; 05C38; 05C48; GOODNESS; CONJECTURE; CLIQUE; PROOF;
D O I
10.1017/fms.2023.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Ramsey number R(F, H) is the minimum number N such that any N-vertex graph either contains a copy of F or its complement contains H. Burr in 1981 proved a pleasingly general result that, for any graph H, provided n is sufficiently large, a natural lower bound construction gives the correct Ramsey number involving cycles: R(C-n, H) = (n - 1)( x(H) - 1) + sigma (H), where sigma(H) is the minimum possible size of a colour class in a x(H)-colouring of H. Allen, Brightwell and Skokan conjectured that the same should be true already when n >= |H|x(H).We improve this 40-year-old result of Burr by giving quantitative bounds of the form n >= C|H| log(4 )x (H), which is optimal up to the logarithmic factor. In particular, this proves a strengthening of the Allen-Brightwell-Skokan conjecture for all graphs H with large chromatic number.
引用
收藏
页数:18
相关论文
共 26 条
[1]   Ramsey-goodness-and otherwise [J].
Allen, Peter ;
Brightwell, Graham ;
Skokan, Jozef .
COMBINATORICA, 2013, 33 (02) :125-160
[2]   THE CHROMATIC NUMBER OF RANDOM GRAPHS [J].
BOLLOBAS, B .
COMBINATORICA, 1988, 8 (01) :49-55
[3]  
Bondy J.A., 1973, J. Combin. Theory, Ser. B, V14, P46
[4]   GENERALIZATIONS OF A RAMSEY-THEORETIC RESULT OF CHVATAL [J].
BURR, SA ;
ERDOS, P .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :39-51
[5]  
BURR SA, 1981, J LOND MATH SOC, V24, P405
[6]   The Ramsey numbers R(Cm, K7) and R(C7, K8) [J].
Chen, Yaojun ;
Cheng, T. C. Edwin ;
Zhang, Yunqing .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) :1337-1352
[7]   GENERALIZED RAMSEY THEORY FOR GRAPHS .3. SMALL OFF-DIAGONAL NUMBERS [J].
CHVATAL, V ;
HARARY, F .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (02) :335-&
[8]  
Chvtal V., 1977, J. Gr. Theory, V1, P93, DOI [DOI 10.1002/JGT.3190010118, 10.1002/jgt.3190010118]
[9]  
CONLON D., 2015, Surveys in Combinatorics, V424, P49
[10]  
Erdos P., 1978, Periodica Mathematica Hungarica, V9, P145, DOI 10.1007/BF02018930