Quasi-hereditary slim cyclotomic q-Schur algebras

被引:1
作者
Deng, Bangming [1 ]
Yang, Guiyu [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Shandong Univ Technol, Sch Math & Stat, Zibo 255000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyclotomic Hecke algebra; Slim cyclotomic q-Schur algebra; Quasi-heredity; HECKE ALGEBRAS;
D O I
10.1016/j.jpaa.2023.107354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Slim cyclotomic q-Schur algebras are certain centralizer subalgebras of cyclotomic q-Schur algebras in the sense of Dipper, James and Mathas, including q-Schur algebras of type A and C as examples. In the present paper we provide a sufficient condition for a slim cyclotomic q-Schur algebra Sm(n, r) to be quasi-hereditary. More precisely, it is shown that Sm(n, r) is quasi-hereditary if the cyclotomic Hecke algebra has a semisimple bottom. Moreover, we prove that Sm(1, r) is quasi-hereditary if and only if the cyclotomic Hecke algebra has a semisimple bottom. In the case where m = n = r = 2 and q = +/- 1, we prove that this condition is also necessary.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:29
相关论文
共 30 条
  • [1] A HECKE ALGEBRA OF (Z/RZ)/S(N) AND CONSTRUCTION OF ITS IRREDUCIBLE REPRESENTATIONS
    ARIKI, S
    KOIKE, K
    [J]. ADVANCES IN MATHEMATICS, 1994, 106 (02) : 216 - 243
  • [2] GEOMETRIC SCHUR DUALITY OF CLASSICAL TYPE
    Bao, Huanchen
    Kujawa, Jonathan
    Li, Yiqiang
    Wang, Weiqiang
    [J]. TRANSFORMATION GROUPS, 2018, 23 (02) : 329 - 389
  • [3] Carter R., 1989, FINITE GROUPS LIE TY
  • [4] INTEGRAL AND GRADED QUASI-HEREDITARY ALGEBRAS .1.
    CLINE, E
    PARSHALL, B
    SCOTT, L
    [J]. JOURNAL OF ALGEBRA, 1990, 131 (01) : 126 - 160
  • [5] CLINE E, 1988, J REINE ANGEW MATH, V391, P85
  • [6] Curtis C.W., 1981, METHODS REPRESENTATI, VI
  • [7] DENG B, 2008, MATH SURVEYS MONOGRA, V150
  • [8] Slim cyclotomic q-Schur algebras
    Deng, Bangming
    Du, Jie
    Yang, Guiyu
    [J]. JOURNAL OF ALGEBRA, 2019, 535 : 365 - 406
  • [9] DIPPER R, 1987, P LOND MATH SOC, V54, P57
  • [10] DIPPER R, 1986, P LOND MATH SOC, V52, P20