Molecular Dynamics Simulations of Asphaltene Aggregation: Machine-Learning Identification of Representative Molecules, Molecular Polydispersity, and Inhibitor Performance

被引:9
|
作者
Petuya, Remi [2 ]
Punase, Abhishek [1 ]
Bosoni, Emanuele [2 ]
Filho, Antonio Pedro de Oliveira [1 ]
Sarria, Juan [3 ]
Purkayastha, Nirupam [3 ]
Wylde, Jonathan J. [1 ,4 ]
Mohr, Stephan [2 ]
机构
[1] Clariant Corp, Clariant Oil Serv, Houston, TX 77258 USA
[2] Nextmol Bytelab Solut SL, Barcelona 08018, Spain
[3] Clariant Prod Deutschland GmbH, D-65929 Frankfurt, Germany
[4] Heriot watt Univ, Edinburgh EH14 4AS, Scotland
来源
ACS OMEGA | 2023年 / 8卷 / 05期
关键词
MODEL; DISPERSION; POLYMERS; GROMACS; ONSET; OIL;
D O I
10.1021/acsomega.2c07120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular dynamics simulations have been employed to investigate the effect of molecular polydispersity on the aggregation of asphaltene. To make the large combinatorial space of possible asphaltene blends accessible to a systematic study via simulation, an upfront unsupervised machine-learning approach (clustering) was employed to identify a reduced set of model molecules representative of the diversity of asphaltene. For these molecules, single asphaltene model simulations have shown a broad range of aggregation behaviors, driven by their structural features: size of the aromatic core, length of the aliphatic chains, and presence of heteroatoms. Then, the combination of these model molecules in a series of mixtures have highlighted the complex and diverse effects of molecular polydispersity on the aggregation process of asphaltene. Simulations yielded both antagonistic and synergistic effects mediated by the trigger or facilitator action of specific asphaltene model molecules. These findings illustrate the necessity of accounting for molecular polydispersity when studying the asphaltene aggregation process and have permitted establishing a robust protocol for the in silico evaluation of the performance of asphaltene inhibitors, as illustrated for the case of a nonylphenol resin.
引用
收藏
页码:4862 / 4877
页数:16
相关论文
共 31 条
  • [1] Effect of cooling rates on aggregation interaction of asphaltene molecules: Insights from molecular dynamics simulations
    Yu, Pengfei
    Liu, Xueqian
    Zhu, Haoran
    Zhou, Yang
    Lai, Dehua
    Peng, Haoping
    Lei, Yun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 679
  • [2] Molecular dynamics simulations of asphaltene aggregation under different conditions
    Tirjoo, Amin
    Bayati, Behrouz
    Rezaei, Hossein
    Rahmati, Mahmoud
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 177 : 392 - 402
  • [3] Machine Learning Suggests Possible Bias in Molecular Simulations for Asphaltene Systems
    Perez, Felipe
    Ali, Azeezat
    Wang, Jianxin
    Patterson, Joseph E.
    Kini, Ramesh
    Striolo, Alberto
    ENERGY & FUELS, 2024, 38 (09) : 7437 - 7453
  • [4] Molecular Dynamics Simulations of Asphaltene Aggregation in Supercritical Carbon Dioxide with and without Limonene
    Headen, Thomas F.
    Boek, Edo S.
    ENERGY & FUELS, 2011, 25 (02) : 503 - 508
  • [5] Asphaltene aggregation studied by molecular dynamics simulations: role of the molecular architecture and solvents on the supramolecular or colloidal behavior
    Silva, H. Santos
    Alfarra, A.
    Vallverdu, G.
    Begue, D.
    Bouyssiere, B.
    Baraille, I.
    PETROLEUM SCIENCE, 2019, 16 (03) : 669 - 684
  • [6] Molecular dynamics simulations of asphaltene aggregation in heavy oil system for the application to solvent deasphalting
    Park, Jun Woo
    Lee, Ki Bong
    FUEL, 2022, 323
  • [7] Impact of H-Bonds and Porphyrins on Asphaltene Aggregation As Revealed by Molecular Dynamics Simulations
    Silva, H. Santos
    Alfarra, A.
    Vallverdu, G.
    Begue, D.
    Bouyssiere, B.
    Baraille, I.
    ENERGY & FUELS, 2018, 32 (11) : 11153 - 11164
  • [8] Probing the Effect of Salt on Asphaltene Aggregation in Aqueous Solutions Using Molecular Dynamics Simulations
    Sun, Xiaoyu
    Jian, Cuiying
    He, Yingkai
    Zeng, Hongbo
    Tang, Tian
    ENERGY & FUELS, 2018, 32 (08) : 8090 - 8097
  • [9] Determination of glass transition temperature of polyimides from atomistic molecular dynamics simulations and machine-learning algorithms
    Wen, Chengyuan
    Liu, Binghan
    Wolfgang, Josh
    Long, Timothy E.
    Odle, Roy
    Cheng, Shengfeng
    JOURNAL OF POLYMER SCIENCE, 2020, 58 (11) : 1521 - 1534
  • [10] Aggregation of Asphaltene Subfractions A1 and A2 in Different Solvents from the Perspective of Molecular Dynamics Simulations
    Villegas, Orlando
    Vallverdu, Germain Salvato
    Bouyssiere, Brice
    Acevedo, Socrates
    Castillo, Jimmy
    Baraille, Isabelle
    ENERGY & FUELS, 2023, 37 (04) : 2681 - 2691