Improved prediction of sudden cardiac death in patients with heart failure through digital processing of electrocardiography

被引:26
作者
Shiraishi, Yasuyuki [1 ]
Goto, Shinichi [2 ,3 ]
Niimi, Nozomi [1 ]
Katsumata, Yoshinori [4 ]
Goda, Ayumi [5 ]
Takei, Makoto [6 ]
Saji, Mike [7 ]
Sano, Motoaki [1 ]
Fukuda, Keiichi [1 ]
Kohno, Takashi [5 ]
Yoshikawa, Tsutomu [7 ]
Kohsaka, Shun [1 ]
机构
[1] Keio Univ, Dept Cardiol, Sch Med, 35 Shinanomachi Shinjuku Ku, Tokyo 1608582, Japan
[2] Brigham & Womens Hosp, Dept Med, One Brave Idea, Boston, MA USA
[3] Brigham & Womens Hosp, Dept Med, Div Cardiovasc Med, Boston, MA USA
[4] Keio Univ, Inst Integrated Sports Med, Sch Med, Tokyo, Japan
[5] Kyorin Univ, Dept Cardiovasc Med, Fac Med, Tokyo, Japan
[6] Saiseikai Cent Hosp, Dept Cardiol, Tokyo, Japan
[7] Sakakibara Heart Inst, Dept Cardiol, Tokyo, Japan
来源
EUROPACE | 2023年 / 25卷 / 03期
关键词
Artificial intelligence; Electrocardiogram; Heart failure; Left ventricular ejection fraction; Sudden cardiac death; PROPORTIONAL RISK; AMERICAN-COLLEGE; DYSFUNCTION; COMMITTEE;
D O I
10.1093/europace/euac261
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Available predictive models for sudden cardiac death (SCD) in heart failure (HF) patients remain suboptimal. We assessed whether the electrocardiography (ECG)-based artificial intelligence (AI) could better predict SCD, and also whether the combination of the ECG-AI index and conventional predictors of SCD would improve the SCD stratification among HF patients. Methods and results In a prospective observational study, 4 tertiary care hospitals in Tokyo enrolled 2559 patients hospitalized for HF who were successfully discharged after acute decompensation. The ECG data during the index hospitalization were extracted from the hospitals' electronic medical record systems. The association of the ECG-AI index and SCD was evaluated with adjustment for left ventricular ejection fraction (LVEF), New York Heart Association (NYHA) class, and competing risk of non-SCD. The ECG-AI index plus classical predictive guidelines (i.e. LVEF <= 35%, NYHA Class II and III) significantly improved the discriminative value of SCD [receiver operating characteristic area under the curve (ROC-AUC), 0.66 vs. 0.59; P = 0.017; Delong's test] with good calibration (P = 0.11; Hosmer-Lemeshow test) and improved net reclassification [36%; 95% confidence interval (CI), 9-64%; P = 0.009]. The Fine-Gray model considering the competing risk of non-SCD demonstrated that the ECG-AI index was independently associated with SCD (adjusted sub-distributional hazard ratio, 1.25; 95% CI, 1.04-1.49; P = 0.015). An increased proportional risk of SCD vs. non-SCD with an increasing ECG-AI index was also observed (low, 16.7%; intermediate, 18.5%; high, 28.7%; P for trend = 0.023). Similar findings were observed in patients aged <= 75 years with a non-ischaemic aetiology and an LVEF of >35%. Conclusion To improve risk stratification of SCD, ECG-based AI may provide additional values in the management of patients with HF.
引用
收藏
页码:922 / 930
页数:9
相关论文
共 23 条
[1]  
Heidenreich Paul A, 2022, Circulation, V145, pe895, DOI [10.1161/CIR.0000000000001073, 10.1161/CIR.0000000000001063]
[2]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[3]   Seattle Heart Failure and Proportional Risk Models Predict Benefit From Implantable Cardioverter-Defibrillators [J].
Bilchick, Kenneth C. ;
Wang, Yongfei ;
Cheng, Alan ;
Curtis, Jeptha P. ;
Dharmarajan, Kumar ;
Stukenborg, George J. ;
Shadman, Ramin ;
Anand, Inder ;
Lund, Lars H. ;
Dahlstroem, Ulf ;
Sartipy, Ulrik ;
Maggioni, Aldo ;
Swedberg, Karl ;
O'Conner, Chris ;
Levy, Wayne C. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 69 (21) :2606-2618
[4]   Reasons for Lack of Improvement in Treatment With Evidence-Based Therapies in Heart Failure [J].
Bozkurt, Biykem .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (19) :2384-2387
[5]  
Butala NM, 2021, CIRCULATION, V144
[6]   Risk stratification for sudden cardiac death in North America - current perspectives [J].
Buxton, Alfred E. ;
Waks, Jonathan W. ;
Shen, Changyu ;
Chen, Peng-Sheng .
JOURNAL OF ELECTROCARDIOLOGY, 2016, 49 (06) :817-823
[7]   Age and Outcomes of Primary Prevention Implantable Cardioverter-Defibrillators in Patients With Nonischemic Systolic Heart Failure [J].
Elming, Marie Bayer ;
Nielsen, Jens C. ;
Haarbo, Jens ;
Videbaek, Lars ;
Korup, Eva ;
Signorovitch, James ;
Olesen, Line Lisbeth ;
Hildebrandt, Per ;
Steffensen, Flemming H. ;
Bruun, Niels E. ;
Eiskjaer, Hans ;
Brandes, Axel ;
Thogersen, Anna M. ;
Gustafsson, Finn ;
Egstrup, Kenneth ;
Videbaek, Regitze ;
Hassager, Christian ;
Svendsen, Jesper Hastrup ;
Hofsten, Dan E. ;
Torp-Pedersen, Christian ;
Pehrson, Steen ;
Kober, Lars ;
Thune, Jens Jakob .
CIRCULATION, 2017, 136 (19) :1772-1780
[8]   Incidence and Predictors of Out-of-Hospital Cardiac Arrest Within 90 Days After Myocardial Infarction [J].
Faxen, Jonas ;
Jernberg, Tomas ;
Hollenberg, Jacob ;
Gadler, Fredrik ;
Herlitz, Johan ;
Szummer, Karolina .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 76 (25) :2926-2936
[9]   Prediction of sudden cardiac death in Japanese heart failure patients: international validation of the Seattle Proportional Risk Model [J].
Fukuoka, Ryoma ;
Kohno, Takashi ;
Kohsaka, Shun ;
Shiraishi, Yasuyuki ;
Sawano, Mitsuaki ;
Abe, Takayuki ;
Nagatomo, Yuji ;
Goda, Ayumi ;
Mizuno, Atsushi ;
Fukuda, Keiichi ;
Shadman, Ramin ;
Dardas, Todd F. ;
Levy, Wayne C. ;
Yoshikawa, Tsutomu .
EUROPACE, 2020, 22 (04) :588-597
[10]   Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms [J].
Goto, Shinichi ;
Mahara, Keitaro ;
Beussink-Nelson, Lauren ;
Ikura, Hidehiko ;
Katsumata, Yoshinori ;
Endo, Jin ;
Gaggin, Hanna K. ;
Shah, Sanjiv J. ;
Itabashi, Yuji ;
MacRae, Calum A. ;
Deo, Rahul C. .
NATURE COMMUNICATIONS, 2021, 12 (01)