Development of a multigenomic liquid biopsy (PROSTest) for prostate cancer in whole blood

被引:5
作者
Modlin, Irvin M. [1 ]
Kidd, Mark [2 ]
Drozdov, Ignat A. [3 ]
Boegemann, Martin [4 ]
Bodei, Lisa [5 ]
Kunikowska, Jolanta [6 ]
Malczewska, Anna [7 ]
Bernemann, Christof [4 ]
Koduru, Srinivas V. [2 ]
Rahbar, Kambiz [8 ]
机构
[1] Yale Univ, Sch Med, New Haven, CT 06520 USA
[2] Wren Labs LLC, Branford, CT 06405 USA
[3] Bering Ltd, London, England
[4] Munster Univ Hosp, Dept Urol, Munster, Germany
[5] Mem Sloan Kettering Canc Ctr, Dept Radiol, Mol Imaging & Therapy Serv, New York, NY USA
[6] Med Univ Warsaw, Dept Nucl Med, Warsaw, Poland
[7] Med Univ Silesia, Dept Endocrinol, Katowice, Poland
[8] Munster Univ Hosp, Dept Nucl Med, Munster, Germany
关键词
adenocarcinoma; biomarker; diagnosis; liquid biopsy; mRNA; PCa; prostate cancer; PSA; qPCR; whole blood; BIOMARKER; ANTIGEN; MEN;
D O I
10.1002/pros.24704
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction We describe the development of a molecular assay from publicly available tumor tissue mRNA databases using machine learning and present preliminary evidence of functionality as a diagnostic and monitoring tool for prostate cancer (PCa) in whole blood. Materials and MethodsWe assessed 1055 PCas (public microarray data sets) to identify putative mRNA biomarkers. Specificity was confirmed against 32 different solid and hematological cancers from The Cancer Genome Atlas (n = 10,990). This defined a 27-gene panel which was validated by qPCR in 50 histologically confirmed PCa surgical specimens and matched blood. An ensemble classifier (Random Forest, Support Vector Machines, XGBoost) was trained in age-matched PCas (n = 294), and in 72 controls and 64 BPH. Classifier performance was validated in two independent sets (n = 263 PCas; n = 99 controls). We assessed the panel as a postoperative disease monitor in a radical prostatectomy cohort (RPC: n = 47). Results A PCa-specific 27-gene panel was identified. Matched blood and tumor gene expression levels were concordant (r = 0.72, p < 0.0001). The ensemble classifier ("PROSTest") was scaled 0%-100% and the industry-standard operating point of >= 50% used to define a PCa. Using this, the PROSTest exhibited an 85% sensitivity and 95% specificity for PCa versus controls. In two independent sets, the metrics were 92%-95% sensitivity and 100% specificity. In the RPCs (n = 47), PROSTest scores decreased from 72% +/- 7% to 33% +/- 16% (p < 0.0001, Mann-Whitney test). PROSTest was 26% +/- 8% in 37 with normal postoperative PSA levels (<0.1 ng/mL). In 10 with elevated postoperative PSA, PROSTest was 60% +/- 4%. Conclusion A 27-gene whole blood signature for PCa is concordant with tissue mRNA levels. Measuring blood expression provides a minimally invasive genomic tool that may facilitate prostate cancer management.
引用
收藏
页码:850 / 865
页数:16
相关论文
共 67 条
  • [1] The Molecular Taxonomy of Primary Prostate Cancer
    Abeshouse, Adam
    Ahn, Jaeil
    Akbani, Rehan
    Ally, Adrian
    Amin, Samirkumar
    Andry, Christopher D.
    Annala, Matti
    Aprikian, Armen
    Armenia, Joshua
    Arora, Arshi
    Auman, J. Todd
    Balasundaram, Miruna
    Balu, Saianand
    Barbieri, Christopher E.
    Bauer, Thomas
    Benz, Christopher C.
    Bergeron, Alain
    Beroukhim, Rameen
    Berrios, Mario
    Bivol, Adrian
    Bodenheimer, Tom
    Boice, Lori
    Bootwalla, Moiz S.
    dos Reis, Rodolfo Borges
    Boutros, Paul C.
    Bowen, Jay
    Bowlby, Reanne
    Boyd, Jeffrey
    Bradley, Robert K.
    Breggia, Anne
    Brimo, Fadi
    Bristow, Christopher A.
    Brooks, Denise
    Broom, Bradley M.
    Bryce, Alan H.
    Bubley, Glenn
    Burks, Eric
    Butterfield, Yaron S. N.
    Button, Michael
    Canes, David
    Carlotti, Carlos G.
    Carlsen, Rebecca
    Carmel, Michel
    Carroll, Peter R.
    Carter, Scott L.
    Cartun, Richard
    Carver, Brett S.
    Chan, June M.
    Chang, Matthew T.
    Chen, Yu
    [J]. CELL, 2015, 163 (04) : 1011 - 1025
  • [2] Determining clinical course of diffuse large B-cell lymphoma using targeted transcriptome and machine learning algorithms
    Albitar, Maher
    Zhang, Hong
    Goy, Andre
    Xu-Monette, Zijun Y.
    Bhagat, Govind
    Visco, Carlo
    Tzankov, Alexandar
    Fang, Xiaosheng
    Zhu, Feng
    Dybkaer, Karen
    Chiu, April
    Tam, Wayne
    Zu, Youli
    Hsi, Eric D.
    Hagemeister, Fredrick B.
    Huh, Jooryung
    Ponzoni, Maurilio
    Ferreri, Andres J. M.
    Moller, Michael B.
    Parsons, Benjamin M.
    van Krieken, J. Han
    Piris, Miguel A.
    Winter, Jane N.
    Li, Yong
    Xu, Bing
    Young, Ken H.
    [J]. BLOOD CANCER JOURNAL, 2022, 12 (02)
  • [3] Aleksander SA., 2023, GENETICS, V224
  • [4] Chromatin conformation changes in peripheral blood can detect prostate cancer and stratify disease risk groups
    Alshaker, Heba
    Mills, Robert
    Hunter, Ewan
    Salter, Matthew
    Ramadass, Aroul
    Skinner, Benjamin Matthew
    Westra, Willem
    Green, Jayne
    Akoulitchev, Alexandre
    Winkler, Mathias
    Pchejetski, Dmitri
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2021, 19 (01)
  • [5] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [6] RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics
    Best, Myron G.
    Sol, Nik
    Kooi, Irsan
    Tannous, Jihane
    Westerman, Bart A.
    Rustenburg, Francois
    Schellen, Pepijn
    Verschueren, Heleen
    Post, Edward
    Koster, Jan
    Ylstra, Bauke
    Ameziane, Najim
    Dorsman, Josephine
    Smit, Egbert F.
    Verheul, Henk M.
    Noske, David P.
    Reijneveld, Jaap C.
    Nilsson, R. Jonas A.
    Tannous, Bakhos A.
    Wesseling, Pieter
    Wurdinger, Thomas
    [J]. CANCER CELL, 2015, 28 (05) : 666 - 676
  • [7] Bodei L., 2019, EUR J NUCL MED MOL I, V14, P019
  • [8] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [9] Engineering nonlinear epileptic biomarkers using deep learning and Benford's law
    Caffarini, Joseph
    Gjini, Klevest
    Sevak, Brinda
    Waleffe, Roger
    Kalkach-Aparicio, Mariel
    Boly, Melanie
    Struck, Aaron F.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] cancer, CANC STAT FACTS COMM