Wet-Etching of Acoustically Spalled GaAs for Substrate Reuse

被引:4
作者
Neumann, Anica N. [1 ,2 ]
Coll, Pablo G. [4 ]
Bertoni, Mariana I. [3 ,4 ]
Steiner, Myles A. [1 ]
Warren, Emily L. [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Colorado Sch Mines, Golden, CO 80401 USA
[3] Arizona State Univ, Tempe, AZ 85287 USA
[4] Crystal Sonic Inc, Phoenix, AZ 85003 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2024年 / 14卷 / 02期
关键词
Gallium arsenide; Substrates; Surface treatment; Surface morphology; Etching; Surface roughness; Rough surfaces; gallium arsenide; photovoltaic cells; semiconductor epitaxial layers; spalling; GALLIUM-ARSENIDE; SOLAR-CELLS;
D O I
10.1109/JPHOTOV.2024.3355405
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Acoustic spalling is a promising technique for substrate reuse in the fabrication of gallium arsenide (GaAs) photovoltaic cells. However, the acoustic spalling process can leave the substrate with areas of rough surface morphology that can interfere with subsequent cell growth and processing. In this work, we investigate the use of wet etchants to smooth the surface of acoustically spalled GaAs substrates. We evaluated six different etchants. Of those tested, an 8:1:1 mixture of sulfuric acid, hydrogen peroxide, and water at 30 C-degrees and a moderate stirring rate showed the greatest roughness reduction per mass loss while producing the desired morphology. This etchant was then applied to an acoustically spalled 2-inch GaAs wafer. A single-junction GaAs cell was then grown via metalorganic vapor-phase epitaxy on this substrate, an acoustic spalled substrate without a smoothing etch, and an epi-ready substrate. Use of the 8:1:1 H2SO4:H2O2:H2O etchant produced cells an average efficiency of 12.8% as compared to that of 2.0% grown on the unetched acoustically spalled substrate and 16.3% grown on the epi-ready substrate. The results of this work demonstrate that wet etching is a viable method for smoothing the surface of spalled GaAs substrates, paving the way for substrate reuse via acoustic spalling at efficiencies that approach growth on epi-ready substrates.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 36 条
[1]   CHEMICAL ETCHING CHARACTERISTICS OF (001)GAAS [J].
ADACHI, S ;
OE, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (12) :2427-2435
[2]   Reliability of III-V concentrator solar cells [J].
Algora, Carlos .
MICROELECTRONICS RELIABILITY, 2010, 50 (9-11) :1193-1198
[3]   RELATIONSHIPS BETWEEN FRACTURE PARAMETERS AND FRACTURE SURFACE-ROUGHNESS OF BRITTLE POLYMERS [J].
ARAKAWA, K ;
TAKAHASHI, K .
INTERNATIONAL JOURNAL OF FRACTURE, 1991, 48 (02) :103-114
[4]   CHEMICAL ETCHING OF (100) GAAS IN A SULFURIC-ACID HYDROGEN-PEROXIDE WATER-SYSTEM [J].
BARYCKA, I ;
ZUBEL, I .
JOURNAL OF MATERIALS SCIENCE, 1987, 22 (04) :1299-1304
[5]   Analysis of Crystalline Defects Caused by Growth on Partially Planarized Spalled (100) GaAs Substrates [J].
Boyer, Jacob T. ;
Braun, Anna K. ;
Schulte, Kevin L. ;
Simon, John ;
Johnston, Steven W. ;
Guthrey, Harvey L. ;
Steiner, Myles A. ;
Packard, Corinne E. ;
Ptak, Aaron J. .
CRYSTALS, 2023, 13 (04)
[6]  
Braun Anna K., 2022, 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), P0198, DOI 10.1109/PVSC48317.2022.9938784
[7]   Design of Planarizing Growth Conditions on Unpolished and Faceted (100)-Oriented GaAs Substrates Using Hydride Vapor Phase Epitaxy [J].
Braun, Anna K. ;
Schulte, Kevin L. ;
Simon, John ;
Ptak, Aaron J. ;
Packard, Corinne E. .
CRYSTAL GROWTH & DESIGN, 2023, 23 (02) :1195-1204
[8]   Kinetics of GaAs dissolution in H2O2-NH4OH-H2O solutions [J].
Bryce, C ;
Berk, D .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1996, 35 (12) :4464-4470
[9]   Controlled spalling-based mechanical substrate exfoliation for III-V solar cells: A review [J].
Chen, Jie ;
Packard, Corinne E. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 225
[10]   Sonic Lift-off of GaAs-based Solar Cells with Reduced Surface Facets [J].
Coll, Pablo Guimera ;
Neumann, Anica ;
Smith, David ;
Warren, Emily ;
Polly, Stephen ;
Hubbard, Seth ;
Steiner, Myles A. ;
Bertoni, Mariana, I .
2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, :2141-2143