Effective Hilbert's irreducibility theorem for global fields

被引:1
作者
Paredes, Marcelo [1 ]
Sasyk, Roman [2 ,3 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Inst Argentino Matemat Alberto P Calderon, Saavedra 15,Piso 3, RA-1083 Buenos Aires, Argentina
[3] Univ Buenos Aires, Fac Ingn, Dept Matemat, Ave Paseo Colon 850, RA-1063 Buenos Aires, Argentina
关键词
RATIONAL-POINTS; CONJECTURE; BOUNDS; CURVES; NUMBER;
D O I
10.1007/s11856-023-2604-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an effective form of Hilbert's irreducibility theorem for polynomials over a global field K. More precisely, we give effective bounds for the number of specializations t is an element of O-K that do not preserve the irreducibility or the Galois group of a given irreducible polynomial F(T, Y) is an element of K[T, Y]. The bounds are explicit in the height and degree of the polynomial F(T, Y), and are optimal in terms of the size of the parameter t is an element of O-K. Our proofs deal with the function field and number field cases in a unified way.
引用
收藏
页码:851 / 877
页数:27
相关论文
共 50 条
[31]   Lagrange's four squares theorem and Chen's theorem [J].
Tian, Shuangrui .
RAMANUJAN JOURNAL, 2025, 68 (01)
[32]   A flexible method for applying Chabauty's Theorem [J].
Flynn, EV .
COMPOSITIO MATHEMATICA, 1997, 105 (01) :79-94
[33]   A spectral Erdős-Rademacher theorem [J].
Li, Yongtao ;
Lu, Lu ;
Peng, Yuejian .
ADVANCES IN APPLIED MATHEMATICS, 2024, 158
[34]   Sums of squares in real quadratic fields and Hilbert modular groups [J].
Chamizo, Fernando ;
Miatello, Roberto J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (01) :244-259
[35]   Roth's theorem: an introduction to diophantine approximation [J].
Nakamaye, Michael .
RATIONAL POINTS, RATIONAL CURVES, AND ENTIRE HOLOMORPHIC CURVES ON PROJECTIVE VARIETIES, 2015, 654 :75-108
[36]   A generic effective Oppenheim theorem for systems of forms [J].
Bandi, Prasuna ;
Ghosh, Anish ;
Han, Jiyoung .
JOURNAL OF NUMBER THEORY, 2021, 218 :311-333
[37]   A Bertini type theorem for pencils over finite fields [J].
Asgarli, Shamil ;
Ghioca, Dragos .
FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
[38]   A Spectral Erdős-Pósa Theorem [J].
Zhai, Ming-qing ;
Liu, Rui-fang .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2025,
[39]   TVERBERG'S THEOREM IS 50 YEARS OLD: A SURVEY [J].
Barany, Imre ;
Soberon, Pablo .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 55 (04) :459-492
[40]   CONSTRUCTION OF GLOBAL FUNCTION FIELDS FROM LINEAR CODES AND VICE VERSA [J].
Xing, Chaoping ;
Yeo, Sze Ling .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (03) :1333-1349