Easily Pyrolyzable Biomass Components Significantly Affect the Physicochemical Properties and Water-Holding Capacity of the Pyrolyzed Biochar

被引:3
作者
Zhang, Kaizhao [1 ,2 ,3 ]
Zhang, Kun [4 ]
Li, Yaoming [1 ,2 ,3 ]
Kang, Qilin [1 ,2 ,3 ]
Wang, Yaofeng [5 ]
Wang, Jing [1 ,4 ]
Yang, Kai [1 ,4 ]
Mao, Jiefei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Key Lab Ecol Safety & Sustainable Dev Arid Lands, Urumqi 830011, Peoples R China
[2] Chinese Acad Sci, Res Ctr Ecol & Environm Cent Asia, Urumqi 830011, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Xinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
[5] Xinjiang Agr Univ, Coll Resources & Environm, Urumqi 830052, Peoples R China
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 11期
关键词
cellulose; easily pyrolyzable components; hemicellulose; pore structure; water-holding capacity; RUBBER-WOOD-SAWDUST; STRUCTURE EVOLUTION; POTENTIAL USE; TEMPERATURE; HEMICELLULOSE; CELLULOSE; POROSITY; SORPTION; TIME;
D O I
10.3390/agriculture13112053
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The influences of feedstocks on biochar properties are widely reported. However, the influence of the transformation of biomass components (mainly cellulose, hemicellulose, and lignin) during feedstock pyrolysis on the obtained biochar has not been clearly stated. Here, biochar was pyrolyzed from four biomass types with different fractions of the three main components, of which surface area, pore structure, functional group, and thermogravimetric analyses were conducted. Further, we investigated the links among the physicochemical properties and water-holding capacity (WHC) of the biochar by measuring the WHC of a biochar-silica-sand (SS) mixture. Cellulose and hemicellulose were considered the easily pyrolyzable components of the feedstock owing to their low thermal stabilities. Additionally, the thermal decomposition of the easily pyrolyzable components caused the disappearance of most functional groups from the biochar that was synthesized at >350 degrees C. Moreover, the WHC of the biochar-SS mixture correlated significantly with the surface area and pore volumes of the biochar. Notably, the thermal residual mass and the WHC of the biochar-SS mixture exhibited the strongest correlation. Poplar wood sawdust (PT), which accounted for the highest mesopore volume of the biochar sample, contained the highest amount (86.09%) of the easily pyrolyzable components. The PT-derived biochar exhibited superior WHC than other biochar types, indicating that the dehydration, deoxygenation, and condensation of the easily pyrolyzable components of biomasses promoted gradual pore formation, further contributing to the increased WHC of the mixture. Rather than high-temperature-pyrolyzed biochar, PT350 demonstrated the highest WHC (599 mg/g), revealing that attention should be drawn to the contribution of low-temperature-pyrolyzed biochar to soil water retention in future research.
引用
收藏
页数:13
相关论文
共 55 条
[1]   Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil [J].
Abel, Stefan ;
Peters, Andre ;
Trinks, Steffen ;
Schonsky, Horst ;
Facklam, Michael ;
Wessolek, Gerd .
GEODERMA, 2013, 202 :183-191
[2]  
Basso Andres S., 2013, GCB Bioenergy, V5, P132, DOI 10.1111/gcbb.12026
[3]   Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks [J].
Berglund, Jennie ;
Mikkelsen, Deirdre ;
Flanagan, Bernadine M. ;
Dhital, Sushil ;
Gaunitz, Stefan ;
Henriksson, Gunnar ;
Lindstrom, Mikael E. ;
Yakubov, Gleb E. ;
Gidley, Michael J. ;
Vilaplana, Francisco .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Biochar and Soil Physical Properties [J].
Blanco-Canqui, Humberto .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2017, 81 (04) :687-711
[5]   New approaches to measuring biochar density and porosity [J].
Brewer, Catherine E. ;
Chuang, Victoria J. ;
Masiello, Caroline A. ;
Gonnermann, Helge ;
Gao, Xiaodong ;
Dugan, Brandon ;
Driver, Laura E. ;
Panzacchi, Pietro ;
Zygourakis, Kyriacos ;
Davies, Christian A. .
BIOMASS & BIOENERGY, 2014, 66 :176-185
[6]   Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J].
Cao, Xinde ;
Harris, Willie .
BIORESOURCE TECHNOLOGY, 2010, 101 (14) :5222-5228
[7]   Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil [J].
Chen, Dengyu ;
Cen, Kehui ;
Zhuang, Xiaozhuang ;
Gan, Ziyu ;
Zhou, Jianbin ;
Zhang, Yimeng ;
Zhang, Hong .
COMBUSTION AND FLAME, 2022, 242
[8]   Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass [J].
Chen, Wei-Hsin ;
Kuo, Po-Chih .
ENERGY, 2011, 36 (02) :803-811
[9]   The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance [J].
Chen, Yingquan ;
Zhang, Xiong ;
Chen, Wei ;
Yang, Haiping ;
Chen, Hanping .
BIORESOURCE TECHNOLOGY, 2017, 246 :101-109
[10]   A review of torrefaction for bioenergy feedstock production [J].
Ciolkosz, Daniel ;
Wallace, Robert .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2011, 5 (03) :317-329