Impact of spiking neurons leakages and network recurrences on event-based spatio-temporal pattern recognition

被引:7
作者
Bouanane, Mohamed Sadek [1 ]
Cherifi, Dalila [1 ]
Chicca, Elisabetta [2 ,3 ]
Khacef, Lyes [2 ,3 ]
机构
[1] Univ Boumerdes, Inst Elect & Elect Engn, Boumerdes, Algeria
[2] Univ Groningen, Zernike Inst Adv Mat, Bioinspired Circuits & Syst Lab, Groningen, Netherlands
[3] Univ Groningen, Groningen Cognit Syst & Mat Ctr, Groningen, Netherlands
关键词
event-based sensors; digital neuromorphic architectures; spiking neural networks; spatio-temporal patterns; neurons leakages; neural heterogeneity; network recurrences; NEURAL-NETWORK; SODIUM LEAK; MODEL; LOIHI;
D O I
10.3389/fnins.2023.1244675
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Spiking neural networks coupled with neuromorphic hardware and event-based sensors are getting increased interest for low-latency and low-power inference at the edge. However, multiple spiking neuron models have been proposed in the literature with different levels of biological plausibility and different computational features and complexities. Consequently, there is a need to define the right level of abstraction from biology in order to get the best performance in accurate, efficient and fast inference in neuromorphic hardware. In this context, we explore the impact of synaptic and membrane leakages in spiking neurons. We confront three neural models with different computational complexities using feedforward and recurrent topologies for event-based visual and auditory pattern recognition. Our results showed that, in terms of accuracy, leakages are important when there are both temporal information in the data and explicit recurrence in the network. Additionally, leakages do not necessarily increase the sparsity of spikes flowing in the network. We also investigated the impact of heterogeneity in the time constant of leakages. The results showed a slight improvement in accuracy when using data with a rich temporal structure, thereby validating similar findings obtained in previous studies. These results advance our understanding of the computational role of the neural leakages and network recurrences, and provide valuable insights for the design of compact and energy-efficient neuromorphic hardware for embedded systems.
引用
收藏
页数:13
相关论文
共 50 条
[21]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[22]   An anatomically comprehensive atlas of the adult human brain transcriptome [J].
Hawrylycz, Michael J. ;
Lein, Ed S. ;
Guillozet-Bongaarts, Angela L. ;
Shen, Elaine H. ;
Ng, Lydia ;
Miller, Jeremy A. ;
van de lagemaat, Louie N. ;
Smith, Kimberly A. ;
Ebbert, Amanda ;
Riley, Zackery L. ;
Abajian, Chris ;
Beckmann, Christian F. ;
Bernard, Amy ;
Bertagnolli, Darren ;
Boe, Andrew F. ;
Cartagena, Preston M. ;
Chakravarty, M. Mallar ;
Chapin, Mike ;
Chong, Jimmy ;
Dalley, Rachel A. ;
Daly, Barry David ;
Dang, Chinh ;
Datta, Suvro ;
Dee, Nick ;
Dolbeare, Tim A. ;
Faber, Vance ;
Feng, David ;
Fowler, David R. ;
Goldy, Jeff ;
Gregor, Benjamin W. ;
Haradon, Zeb ;
Haynor, David R. ;
Hohmann, John G. ;
Horvath, Steve ;
Howard, Robert E. ;
Jeromin, Andreas ;
Jochim, Jayson M. ;
Kinnunen, Marty ;
Lau, Christopher ;
Lazarz, Evan T. ;
Lee, Changkyu ;
Lemon, Tracy A. ;
Li, Ling ;
Li, Yang ;
Morris, John A. ;
Overly, Caroline C. ;
Parker, Patrick D. ;
Parry, Sheana E. ;
Reding, Melissa ;
Royall, Joshua J. .
NATURE, 2012, 489 (7416) :391-399
[23]   A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE [J].
HODGKIN, AL ;
HUXLEY, AF .
JOURNAL OF PHYSIOLOGY-LONDON, 1952, 117 (04) :500-544
[24]   Neuromorphic silicon neuron circuits [J].
Indiveri, Giacomo ;
Linares-Barranco, Bernabe ;
Hamilton, Tara Julia ;
van Schaik, Andre ;
Etienne-Cummings, Ralph ;
Delbruck, Tobi ;
Liu, Shih-Chii ;
Dudek, Piotr ;
Hafliger, Philipp ;
Renaud, Sylvie ;
Schemmel, Johannes ;
Cauwenberghs, Gert ;
Arthur, John ;
Hynna, Kai ;
Folowosele, Fopefolu ;
Saighi, Sylvain ;
Serrano-Gotarredona, Teresa ;
Wijekoon, Jayawan ;
Wang, Yingxue ;
Boahen, Kwabena .
FRONTIERS IN NEUROSCIENCE, 2011, 5
[25]   Is Neuromorphic MNIST Neuromorphic? Analyzing the Discriminative Power of Neuromorphic Datasets in the Time Domain [J].
Iyer, Laxmi R. ;
Chua, Yansong ;
Li, Haizhou .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[26]   Which model to use for cortical spiking neurons? [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (05) :1063-1070
[27]   Simple model of spiking neurons [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06) :1569-1572
[28]  
Khacef L, 2022, Arxiv, DOI arXiv:2209.15536
[29]  
Khacef L, 2018, IEEE IJCNN
[30]  
Kingma DP, 2014, ADV NEUR IN, V27