Genome-wide prediction of pathogenic gain- and loss-of-function variants from ensemble learning of a diverse feature set

被引:9
作者
Stein, David [1 ,2 ,3 ]
Kars, Meltem Ece [2 ]
Wu, Yiming [2 ,4 ]
Bayrak, Cigdem Sevim [3 ]
Stenson, Peter D. [5 ]
Cooper, David N. [5 ]
Schlessinger, Avner [1 ,6 ]
Itan, Yuval [2 ,3 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Pharmacol Sci, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[4] China West Normal Univ, Coll Life Sci, Nanchong 637009, Si Chuan, Peoples R China
[5] Cardiff Univ, Inst Med Genet, Sch Med, Cardiff CF14 4XN, Wales
[6] Icahn Sch Med Mt Sinai, Dept Artificial Intelligence & Human Hlth, New York, NY 10029 USA
关键词
Gain-of-function; Loss-of-function; Protein function; Variant functional impact; Pathogenicity prediction; Precision medicine; Genomic medicine; Phenome-wide association studies; Natural language processing; Machine learning; PROTEIN-STRUCTURE; MUTATION; DATABASE; FRAMEWORK; ASSOCIATION; ELEMENTS; DISEASE; IMPACT;
D O I
10.1186/s13073-023-01261-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gain-of-function (GOF) variants give rise to increased/novel protein functions whereas loss-of-function (LOF) variants lead to diminished protein function. Experimental approaches for identifying GOF and LOF are generally slow and costly, whilst available computational methods have not been optimized to discriminate between GOF and LOF variants. We have developed LoGoFunc, a machine learning method for predicting pathogenic GOF, pathogenic LOF, and neutral genetic variants, trained on a broad range of gene-, protein-, and variant-level features describing diverse biological characteristics. LoGoFunc outperforms other tools trained solely to predict pathogenicity for identifying pathogenic GOF and LOF variants and is available at https://itanlab.shinyapps.io/goflof/.
引用
收藏
页数:19
相关论文
共 16 条
  • [1] Genome-wide prediction of pathogenic gain- and loss-of-function variants from ensemble learning of a diverse feature set
    David Stein
    Meltem Ece Kars
    Yiming Wu
    Çiğdem Sevim Bayrak
    Peter D. Stenson
    David N. Cooper
    Avner Schlessinger
    Yuval Itan
    Genome Medicine, 15
  • [2] Both gain- and loss-of-function variants of KCNA1 are associated with paroxysmal kinesigenic dyskinesia
    Sun, Wan-Bing
    Fu, Jing-Xin
    Chen, Yu-Lan
    Li, Hong-Fu
    Wu, Zhi-Ying
    Chen, Dian-Fu
    JOURNAL OF GENETICS AND GENOMICS, 2024, 51 (08) : 801 - 810
  • [3] Distinct neurodevelopmental and epileptic phenotypes associated with gain- and loss-of-function GABRB2 variants
    Mohammadi, Nazanin Azarinejad
    Ahring, Philip Kiaer
    Liao, Vivian Wan Yu
    Chua, Han Chow
    Rosa, Sebastian Ortiz de la
    Johannesen, Katrine Marie
    Michaeli-Yossef, Yael
    Vincent-Devulder, Aline
    Meridda, Catherine
    Bruel, Ange-Line
    Rossi, Alessandra
    Patel, Chirag
    Klepper, Joerg
    Bonanni, Paolo
    Minghetti, Sara
    Trivisano, Marina
    Specchio, Nicola
    Amor, David
    Auvin, Stephane
    Baer, Sarah
    Meyer, Pierre
    Milh, Mathieu
    Salpietro, Vincenzo
    Maroo, Reza
    Lemke, Johannes R.
    Weckhuysen, Sarah
    Christophersen, Palle
    Rubboli, Guido
    Chebib, Mary
    Jensen, Anders A.
    Absalom, Nathan L.
    Moller, Rikke Steensbjerre
    EBIOMEDICINE, 2024, 106
  • [4] Individualized Iterative Phenotyping for Genome-wide Analysis of Loss-of-Function Mutations
    Johnston, Jennifer J.
    Lewis, Katie L.
    Ng, David
    Singh, Larry N.
    Wynter, Jamila
    Brewer, Carmen
    Brooks, Brian P.
    Brownell, Isaac
    Candotti, Fabio
    Gonsalves, Steven G.
    Hart, Suzanne P.
    Kong, Heidi H.
    Rother, Kristina I.
    Sokolic, Robert
    Solomon, Benjamin D.
    Zein, Wadih M.
    Cooper, David N.
    Stenson, Peter D.
    Mullikin, James C.
    Biesecker, Leslie G.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (06) : 913 - 925
  • [5] Genome-Wide Protein Function Prediction through Multi-Instance Multi-Label Learning
    Wu, Jian-Sheng
    Huang, Sheng-Jun
    Zhou, Zhi-Hua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (05) : 891 - 902
  • [6] Familial partial lipodystrophy resulting from loss-of-function PPARγ pathogenic variants: phenotypic, clinical, and genetic features
    Soares, Reivla Marques Vasconcelos
    da Silva, Monique Alvares
    Campos, Julliane Tamara Araujo de Melo
    Lima, Josivan Gomes
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15
  • [7] Linking Variants From Genome-Wide Association Analysis to Function via Transcriptional Network Analysis
    Keller, Benjamin
    Martini, Sebastian
    Sedor, John
    Kretzler, Matthias
    SEMINARS IN NEPHROLOGY, 2010, 30 (02) : 177 - 184
  • [8] Distinctive In Vitro Phenotypes in iPSC-Derived Neurons From Patients With Gain- and Loss-of-Function SCN2A Developmental and Epileptic Encephalopathy
    Mao, Miaomiao
    Mattei, Cristiana
    Rollo, Ben
    Byars, Sean
    Cuddy, Claire
    Berecki, Geza
    Heighway, Jacqueline
    Pachernegg, Svenja
    Menheniott, Trevelyan
    Apted, Danielle
    Jia, Linghan
    Dalby, Kelley
    Nemiroff, Alex
    Mullen, Saul
    Reid, Christopher A.
    Maljevic, Snezana
    Petrou, Steven
    JOURNAL OF NEUROSCIENCE, 2024, 44 (08)
  • [9] Multi-instance multi-label distance metric learning for genome-wide protein function prediction
    Xu, Yonghui
    Min, Huaqing
    Song, Hengjie
    Wu, Qingyao
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2016, 63 : 30 - 40
  • [10] Investigating the Effect of Imputed Structural Variants from Whole-Genome Sequence on Genome-Wide Association and Genomic Prediction in Dairy Cattle
    Chen, Long
    Pryce, Jennie E.
    Hayes, Ben J.
    Daetwyler, Hans D.
    ANIMALS, 2021, 11 (02): : 1 - 16