Genome-wide prediction of pathogenic gain- and loss-of-function variants from ensemble learning of a diverse feature set

被引:9
|
作者
Stein, David [1 ,2 ,3 ]
Kars, Meltem Ece [2 ]
Wu, Yiming [2 ,4 ]
Bayrak, Cigdem Sevim [3 ]
Stenson, Peter D. [5 ]
Cooper, David N. [5 ]
Schlessinger, Avner [1 ,6 ]
Itan, Yuval [2 ,3 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Pharmacol Sci, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[4] China West Normal Univ, Coll Life Sci, Nanchong 637009, Si Chuan, Peoples R China
[5] Cardiff Univ, Inst Med Genet, Sch Med, Cardiff CF14 4XN, Wales
[6] Icahn Sch Med Mt Sinai, Dept Artificial Intelligence & Human Hlth, New York, NY 10029 USA
关键词
Gain-of-function; Loss-of-function; Protein function; Variant functional impact; Pathogenicity prediction; Precision medicine; Genomic medicine; Phenome-wide association studies; Natural language processing; Machine learning; PROTEIN-STRUCTURE; MUTATION; DATABASE; FRAMEWORK; ASSOCIATION; ELEMENTS; DISEASE; IMPACT;
D O I
10.1186/s13073-023-01261-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gain-of-function (GOF) variants give rise to increased/novel protein functions whereas loss-of-function (LOF) variants lead to diminished protein function. Experimental approaches for identifying GOF and LOF are generally slow and costly, whilst available computational methods have not been optimized to discriminate between GOF and LOF variants. We have developed LoGoFunc, a machine learning method for predicting pathogenic GOF, pathogenic LOF, and neutral genetic variants, trained on a broad range of gene-, protein-, and variant-level features describing diverse biological characteristics. LoGoFunc outperforms other tools trained solely to predict pathogenicity for identifying pathogenic GOF and LOF variants and is available at https://itanlab.shinyapps.io/goflof/.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Genome-wide prediction of pathogenic gain- and loss-of-function variants from ensemble learning of a diverse feature set
    David Stein
    Meltem Ece Kars
    Yiming Wu
    Çiğdem Sevim Bayrak
    Peter D. Stenson
    David N. Cooper
    Avner Schlessinger
    Yuval Itan
    Genome Medicine, 15
  • [2] LIPA Variants in Genome-Wide Association Studies of Coronary Artery Diseases Loss-of-Function or Gain-of-Function?
    Zhang, Hanrui
    Reilly, Muredach P.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2017, 37 (06) : 1015 - 1017
  • [3] Functional expression of CLIFAHDD and IHPRF pathogenic variants of the NALCN channel in neuronal cells reveals both gain- and loss-of-function properties
    Bouasse, Malik
    Impheng, Hathaichanok
    Servant, Zoe
    Lory, Philippe
    Monteil, Arnaud
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Functional expression of CLIFAHDD and IHPRF pathogenic variants of the NALCN channel in neuronal cells reveals both gain- and loss-of-function properties
    Malik Bouasse
    Hathaichanok Impheng
    Zoe Servant
    Philippe Lory
    Arnaud Monteil
    Scientific Reports, 9
  • [5] Both gain- and loss-of-function variants of KCNA1 are associated with paroxysmal kinesigenic dyskinesia
    Sun, Wan-Bing
    Fu, Jing-Xin
    Chen, Yu-Lan
    Li, Hong-Fu
    Wu, Zhi-Ying
    Chen, Dian-Fu
    JOURNAL OF GENETICS AND GENOMICS, 2024, 51 (08) : 801 - 810
  • [6] Distinct neurodevelopmental and epileptic phenotypes associated with gain- and loss-of-function GABRB2 variants
    Mohammadi, Nazanin Azarinejad
    Ahring, Philip Kiaer
    Liao, Vivian Wan Yu
    Chua, Han Chow
    Rosa, Sebastian Ortiz de la
    Johannesen, Katrine Marie
    Michaeli-Yossef, Yael
    Vincent-Devulder, Aline
    Meridda, Catherine
    Bruel, Ange-Line
    Rossi, Alessandra
    Patel, Chirag
    Klepper, Joerg
    Bonanni, Paolo
    Minghetti, Sara
    Trivisano, Marina
    Specchio, Nicola
    Amor, David
    Auvin, Stephane
    Baer, Sarah
    Meyer, Pierre
    Milh, Mathieu
    Salpietro, Vincenzo
    Maroo, Reza
    Lemke, Johannes R.
    Weckhuysen, Sarah
    Christophersen, Palle
    Rubboli, Guido
    Chebib, Mary
    Jensen, Anders A.
    Absalom, Nathan L.
    Moller, Rikke Steensbjerre
    EBIOMEDICINE, 2024, 106
  • [7] CRISPR/Cas9 genome-wide sgRNA libraries for loss-of-function and gain-of-function genetic screens
    Tedesco, Donato
    Diehl, Paul
    Makhanov, Mikhail
    Baron, Sylvain
    Chenchik, Alex
    CANCER RESEARCH, 2017, 77
  • [8] Individualized Iterative Phenotyping for Genome-wide Analysis of Loss-of-Function Mutations
    Johnston, Jennifer J.
    Lewis, Katie L.
    Ng, David
    Singh, Larry N.
    Wynter, Jamila
    Brewer, Carmen
    Brooks, Brian P.
    Brownell, Isaac
    Candotti, Fabio
    Gonsalves, Steven G.
    Hart, Suzanne P.
    Kong, Heidi H.
    Rother, Kristina I.
    Sokolic, Robert
    Solomon, Benjamin D.
    Zein, Wadih M.
    Cooper, David N.
    Stenson, Peter D.
    Mullikin, James C.
    Biesecker, Leslie G.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (06) : 913 - 925
  • [9] The Genome-Wide Impact of Nipblb Loss-of-Function on Zebrafish Gene Expression
    Spreafico, Marco
    Mangano, Eleonora
    Mazzola, Mara
    Consolandi, Clarissa
    Bordoni, Roberta
    Battaglia, Cristina
    Bicciato, Silvio
    Marozzi, Anna
    Pistocchi, Anna
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (24) : 1 - 12
  • [10] Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development
    William KF Tse
    Birgit Eisenhaber
    Steven HK Ho
    Qimei Ng
    Frank Eisenhaber
    Yun-Jin Jiang
    BMC Genomics, 10