Data-driven prediction of product yields and control framework of hydrocracking unit

被引:4
作者
Pang, Zheyuan [1 ,2 ]
Huang, Pan [1 ,2 ]
Lian, Cheng [1 ,2 ,3 ]
Peng, Chong [4 ,5 ]
Fang, Xiangcheng [5 ]
Liu, Honglai [1 ,2 ,3 ]
机构
[1] East China Univ Sci & Technol, Shanghai Engn Res Ctr Hierarch Nanomat, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem Engn, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[4] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[5] SINOPEC, Dalian Res Inst Petr & Petrochem, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrocracking; Machine learning; Yield prediction; Process control; COMPUTER-GENERATION; MODEL; HYDROISOMERIZATION; RESIDUE;
D O I
10.1016/j.ces.2023.119386
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, the relationship between the operating conditions and the product yields and a control framework of the hydrocracking process was developed. The data were collected from a hydrocracking unit in a Chinese refinery. Principal component analysis was used to decrease the number of input variables. Then support vector machine, Gaussian process regression (GPR), and decision tree regression models were developed to establish the relationship above. The best model is GPR, whose Pearson correlation coefficient between the prediction value and the actual value is greater than 0.97 for all the product yields. Shapley additive explanations were performed to interpret the results of the GPR models. A control framework of the hydrocracking unit was then proposed based on the results above. The results show that the machine learning method is a valuable tool for predicting the yield of hydrocracking products, and the control framework proposed helps optimize hydrocracking product yields.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Data-Driven Model for Rapid CII Prediction
    Muehmer, Markus
    La Ferlita, Alessandro
    Geber, Evangelos
    Ehlers, Soeren
    Di Nardo, Emanuel
    El Moctar, Ould
    Ciaramella, Angelo
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (11)
  • [42] Data-Driven Convergence Prediction of Astrobots Swarms
    Macktoobian, Matin
    Basciani, Francesco
    Gillet, Denis
    Kneib, Jean-Paul
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (02) : 747 - 758
  • [43] Data-driven inventory control for large product portfolios: A practical application of prescriptive analytics
    Schmidt, Felix G.
    Pibernik, Richard
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 322 (01) : 254 - 269
  • [44] Data-Driven Cybersecurity Incident Prediction: A Survey
    Sun, Nan
    Zhang, Jun
    Rimba, Paul
    Gao, Shang
    Zhang, Leo Yu
    Xiang, Yang
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (02): : 1744 - 1772
  • [45] Data-Driven Community Flood Resilience Prediction
    Abdel-Mooty, Moustafa Naiem
    El-Dakhakhni, Wael
    Coulibaly, Paulin
    WATER, 2022, 14 (13)
  • [46] Investigation on Data-Driven Life Prediction Methods
    Yang, Shuai
    Liu, Chaoqin
    Zhou, Xue
    Liang, Wei
    Miao, Qiang
    2012 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (ICQR2MSE), 2012, : 674 - 680
  • [47] BIG DATA-DRIVEN FRAMEWORK FOR VIRAL CHURN PREVENTION: A CASE STUDY
    Lucantoni, Laura
    Antomarioni, Sara
    Bevilacqua, Maurizio
    Ciarapica, Filippo Emanuele
    MANAGEMENT AND PRODUCTION ENGINEERING REVIEW, 2020, 11 (03) : 38 - 47
  • [48] Practical framework for data-driven RANS modeling with data augmentation
    Xianwen Guo
    Zhenhua Xia
    Shiyi Chen
    Acta Mechanica Sinica, 2021, 37 : 1748 - 1756
  • [49] Data-driven product ranking: A hybrid ranking approach
    Geng, Ruijuan
    Ji, Ying
    Qu, Shaojian
    Wang, Zheng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 6573 - 6592
  • [50] Practical framework for data-driven RANS modeling with data augmentation
    Guo, Xianwen
    Xia, Zhenhua
    Chen, Shiyi
    ACTA MECHANICA SINICA, 2021, 37 (12) : 1748 - 1756