Novel dual-network autoencoder based adversarial domain adaptation with Wasserstein divergence for fault diagnosis of unlabeled data

被引:11
|
作者
Yang, Jun-Feng [1 ,2 ]
Zhang, Ning [1 ,2 ]
He, Yan-Lin [1 ,2 ]
Zhu, Qun-Xiong [1 ,2 ]
Xu, Yuan [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Minist Educ China, Engn Res Ctr Intelligent PSE, Beijing 100029, Peoples R China
关键词
Fault diagnosis; Dual-network autoencoder based adversarial; domain adaptation with Wasserstein; divergence; Domain adaptation; Wasserstein divergence;
D O I
10.1016/j.eswa.2023.122393
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intelligent fault diagnostic techniques based on deep learning have been developed by leaps and bounds, but it is quite difficult to construct a good fault diagnosis model without obtaining sufficient fault data labels. To solve this problem, this article proposes a novel dual-network autoencoder based adversarial domain adaptation with Wasserstein divergence (DWADA). Firstly, a dual-network autoencoder composed of the convolutional neural network (CNN) and the long short-term memory (LSTM) is regarded as a feature extractor for extracting local deep features and adding temporal feature information, while unsupervised reconstruction of the source domain data can ensure high accuracy of the classifier. Secondly, the domain discriminator forms an adversarial training with the feature extractor to facilitate the feature extractor to extract domain-invariant features for classification by minimizing the Wasserstein distance that measures the difference in feature distribution between different domains. Finally, Wasserstein divergence is introduced to the adversarial process to remove the k-Lipschitz constraint for improving the stability of the training. The Tennessee Eastman process (TEP) and the industrial three-phase flow process (TPFP) are applied to verify the performance of DWADA. Simulation results show that DWADA outperforms other related methods in transfer fault diagnosis tasks under different operating conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Double-level adversarial domain adaptation network for intelligent fault diagnosis
    Jiao, Jinyang
    Lin, Jing
    Zhao, Ming
    Liang, Kaixuan
    KNOWLEDGE-BASED SYSTEMS, 2020, 205
  • [22] A Novel Small Samples Fault Diagnosis Method Based on the Self-attention Wasserstein Generative Adversarial Network
    Zhiwu Shang
    Jie Zhang
    Wanxiang Li
    Shiqi Qian
    Jingyu Liu
    Maosheng Gao
    Neural Processing Letters, 2023, 55 : 6377 - 6407
  • [23] Adversarial domain adaptation based on contrastive learning for bearings fault diagnosis
    Pan, Xiaolei
    Chen, Hongxiao
    Wang, Wei
    Su, Xiaoyan
    SIMULATION MODELLING PRACTICE AND THEORY, 2025, 139
  • [24] Unsupervised Method Based on Adversarial Domain Adaptation for Bearing Fault Diagnosis
    Li, Yao
    Yang, Rui
    Wang, Hongshu
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [25] Cross-Conditions Fault Diagnosis of Rolling Bearings Based on Dual Domain Adversarial Network
    Jiang, Yonghua
    Shi, Zhuoqi
    Tang, Chao
    Sun, Jianfeng
    Zheng, Linjie
    Qiu, Zengjie
    He, Yian
    Li, Guoqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [26] Federated adversarial domain generalization network: A novel machinery fault diagnosis method with data privacy
    Wang, Rui
    Huang, Weiguo
    Shi, Mingkuan
    Wang, Jun
    Shen, Changqing
    Zhu, Zhongkui
    KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [27] Research on a Bearing Fault Diagnosis Method Based on an Improved Wasserstein Generative Adversarial Network
    Zhu, Chengshun
    Lin, Wei
    Zhang, Hongji
    Cao, Youren
    Fan, Qiming
    Zhang, Hui
    MACHINES, 2024, 12 (08)
  • [28] A dual-view alignment-based domain adaptation network for fault diagnosis
    Zhao, Chao
    Liu, Guokai
    Shen, Weiming
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (11)
  • [29] Dual adversarial network for cross-domain open set fault diagnosis
    Zhao, Chao
    Shen, Weiming
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 221
  • [30] Unsupervised domain adaptation of bearing fault diagnosis based on Join Sliced Wasserstein Distance
    Chen, Pengfei
    Zhao, Rongzhen
    He, Tianjing
    Wei, Kongyuan
    Yang, Qidong
    ISA TRANSACTIONS, 2022, 129 : 504 - 519