Solvability of a nonlinear parabolic problem arising in modeling surface reactions

被引:0
作者
Ambrazevicius, Algirdas [1 ]
Skakauskas, Vladas [1 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
关键词
coupled parabolic system; positive solutions; reactions on surfaces; REACTION-DIFFUSION SYSTEMS; OXIDATION; GLUCOSE;
D O I
10.1007/s10986-023-09609-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence, uniqueness, and long-time behavior of classical solutions to a coupled system of seven nonlinear parabolic equations. Four of them are determined in the interior of a region, and the other three are solved on a part of the boundary. In particular, such systems arise in modeling of surface reactions that involve the bulk diffusion of reactants toward and reaction products from the biocatalyst surface and surface diffusion of the intermediate reaction products.
引用
收藏
页码:428 / 443
页数:16
相关论文
共 20 条
[1]   Existence and Uniqueness of Classical Solutions to a Nonlinear Reaction-Diffusion Model [J].
Ambrazevicius, A. ;
Skakauskas, V .
ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) :559-575
[2]   Solvability of a model for monomer-monomer surface reactions [J].
Ambrazevicius, A. ;
Skakauskas, V. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 :211-228
[3]  
Ambrazevicius A., 2012, J MATH SCI NEW YORK, V65, P13
[4]  
Bao T.Q., 2017, ARXIV
[5]   Global strong solutions for a class of heterogeneous catalysis models [J].
Bothe, Dieter ;
Koehne, Matthias ;
Maier, Siegfried ;
Saal, Juergen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) :677-709
[6]  
BRIGHT HJ, 1967, J BIOL CHEM, V242, P994
[7]   Global solutions for quasilinear parabolic systems [J].
Constantin, A ;
Escher, J ;
Yin, ZY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 197 (01) :73-84
[8]  
Friedman A., 1964, PARTIAL DIFFERENTIAL
[9]  
Ladyzenskaja O. A., 1988, LINEAR QUASILINEAR E, V23
[10]  
Morgan J., 2019, CONTRIBUTIONS PARTIA, P359