Two-Dimensional Noble Metal Chalcogenides in the Frustrated Snub-Square Lattice

被引:1
作者
Wang, Hai-Chen [1 ]
Huran, Ahmad W. [1 ]
Marques, Miguel A. L. [2 ]
Nalabothula, Muralidhar [3 ]
Wirtz, Ludger [3 ]
Romestan, Zachary [4 ]
Romero, Aldo H. [3 ,4 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany
[2] Ruhr Univ Bochum, Univ Alliance Ruhr, Fac Mech Engn, Res Ctr Future Energy Mat & Syst, D-44801 Bochum, Germany
[3] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[4] West Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
基金
美国国家科学基金会;
关键词
EFFECTIVE-MASS; BAND; EXCITATIONS; TRANSITION;
D O I
10.1021/acs.jpclett.3c02131
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study two-dimensional noble metal chalcogenides, with compositions {Cu, Ag, Au}(2){S, Se, Te}, crystallizing in a snub-square lattice. This is a semiregular two-dimensional tesselation formed by triangles and squares that exhibits geometrical frustration. We use for comparison a square lattice, from which the snub-square tiling can be derived by a simple rotation of the squares. The monolayer snub-square chalcogenides are very close to thermodynamic stability, with the most stable system (Ag2Se) a mere 7 meV/atom above the convex hull of stability. All compounds studied in the square and snub-square lattice are semiconductors, with band gaps ranging from 0.1 to more than 2.5 eV. Excitonic effects are strong, with an exciton binding energy of around 0.3 eV. We propose the Cu (001) surface as a possible substrate to synthesize Cu2Se, although many other metal and semiconducting surfaces can be found with very good lattice matching.
引用
收藏
页码:9969 / 9977
页数:9
相关论文
共 56 条
[1]   TRANSPARENT CONDUCTING OXIDE FILMS FOR VARIOUS APPLICATIONS: A REVIEW [J].
Afre, Rakesh A. ;
Sharma, Nallin ;
Sharon, Maheshwar ;
Sharon, Madhuri .
REVIEWS ON ADVANCED MATERIALS SCIENCE, 2018, 53 (01) :79-89
[2]  
Anthony John W., Handbook of Mineralogy
[3]   On the stability of Archimedean tilings formed by patchy particles [J].
Antlanger, Moritz ;
Doppelbauer, Guenther ;
Kahl, Gerhard .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (40)
[4]   Archimedean Tessellation Found by the Variation of Building Blocks' and Linkers' Geometry: In Silico Investigations [J].
Baran, Lukasz ;
Rzysko, Wojciech ;
Szajnar, Sebastian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (37) :20101-20108
[5]   Theory of optical absorption in diamond, Si, Ge, and GaAs [J].
Benedict, LX ;
Shirley, EL ;
Bohn, RB .
PHYSICAL REVIEW B, 1998, 57 (16) :R9385-R9387
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]  
Borchert W., 1954, Z. Kristallogr. -Cryst. Mater, V106, P5, DOI [10.1524/zkri.1954.106.16.5, DOI 10.1524/ZKRI.1954.106.16.5]
[8]   Magnetic Archimedean Tessellations in Metal-Organic Frameworks [J].
Chen, Hua ;
Voigt, Laura ;
Kubus, Mariusz ;
Mihrin, Dmytro ;
Mossin, Susanne ;
Larsen, Rene W. ;
Kegnaes, Soren ;
Piligkos, Stergios ;
Pedersen, Kasper S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (35) :14041-14045
[9]   Precision measurements of crystals of the alkali halides [J].
Davey, WP .
PHYSICAL REVIEW, 1923, 21 (02) :143-161
[10]   Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly [J].
Ecija, David ;
Urgel, Jose I. ;
Papageorgiou, Anthoula C. ;
Joshi, Sushobhan ;
Auwaerter, Willi ;
Seitsonen, Ari P. ;
Klyatskaya, Svetlana ;
Ruben, Mario ;
Fischer, Sybille ;
Vijayaraghavan, Saranyan ;
Reichert, Joachim ;
Barth, Johannes V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (17) :6678-6681