Stable decomposition of homogeneous Mixed-norm Triebel-Lizorkin spaces

被引:0
|
作者
Nielsen, Morten [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, Skjernvej 4A, DK-9220 Aalborg, Denmark
关键词
Smoothness space; Triebel-Lizorkin space; Besov space; Nonlinear approximation; Jackson inequality; Bernstein inequality; NONLINEAR APPROXIMATION; WAVELETS;
D O I
10.1016/j.jat.2023.105958
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct smooth localized orthonormal bases compatible with homogeneous mixed-norm Triebel Lizorkin spaces in an anisotropic setting on Rd. The construction is based on tensor products of so-called univariate brushlet functions that are constructed using local trigonometric bases in the frequency domain. It is shown that the associated decomposition system form unconditional bases for the homogeneous mixed-norm Triebel-Lizorkin spaces. In the second part of the paper we study nonlinear m-term approximation with the constructed basis in the mixed-norm setting, where the behavior, in general, for d >= 2, is shown to be fundamentally different from the unmixed case. However, Jackson and Bernstein inequalities for m-term approximation can still be derived.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces
    Georgiadis, A. G.
    Johnsen, J.
    Nielsen, M.
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (04): : 587 - 624
  • [2] Triebel-Lizorkin sequence spaces are genuine mixed-norm spaces
    Brigham, Dan
    Mitrea, Dorina
    Mitrea, Irina
    Mitrea, Marius
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) : 503 - 517
  • [3] Identification of anisotropic mixed-norm Hardy spaces and certain homogeneous Triebel-Lizorkin spaces
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF APPROXIMATION THEORY, 2020, 258
  • [4] Pseudodifferential operators on mixed-norm Besov and Triebel-Lizorkin spaces
    Georgiadis, A. G.
    Nielsen, M.
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (16) : 2019 - 2036
  • [5] Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces
    A. G. Georgiadis
    J. Johnsen
    M. Nielsen
    Monatshefte für Mathematik, 2017, 183 : 587 - 624
  • [6] ATOMIC DECOMPOSITION OF WEIGHTED TRIEBEL-LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE
    Li, Ji
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 89 (02) : 255 - 275
  • [7] TRIEBEL-LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE
    HAN, YS
    STUDIA MATHEMATICA, 1994, 108 (03) : 247 - 273
  • [8] Anisotropic, Mixed-Norm Lizorkin-Triebel Spaces and Diffeomorphic Maps
    Johnsen, J.
    Hansen, S. Munch
    Sickel, W.
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [9] Decomposition of Besov and Triebel-Lizorkin spaces on the sphere
    Narcowich, F.
    Petrushev, P.
    Ward, J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) : 530 - 564
  • [10] Dahlberg degeneracy for homogeneous Besov and Triebel-Lizorkin spaces
    Bourdaud, Gerard
    Moussai, Madani
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (03) : 878 - 894