Efficient Planar Pose Estimation via UWB Measurements

被引:6
作者
Jiang, Haodong [1 ,2 ]
Wang, Wentao [3 ,4 ]
Shen, Yuan [5 ]
Li, Xinghan [3 ,4 ]
Ren, Xiaoqiang [6 ]
Mu, Biqiang [7 ]
Wu, Junfeng [1 ,2 ]
机构
[1] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
[2] Chinese Univ HongKong, Sch Data Sci, Shenzhen, Peoples R China
[3] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou, Peoples R China
[4] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou, Peoples R China
[5] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing, Peoples R China
[6] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai, Peoples R China
[7] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Key Lab Syst & Control, Beijing, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA | 2023年
基金
中国国家自然科学基金;
关键词
RIGID-BODY LOCALIZATION;
D O I
10.1109/ICRA48891.2023.10161456
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State estimation is an essential part of autonomous systems. Integrating the Ultra-Wideband (UWB) technique has been shown to correct the long-term estimation drift and bypass the complexity of loop closure detection. However, few works on robotics treat UWB as a stand-alone state estimation solution. The primary purpose of this work is to investigate planar pose estimation using only UWB range measurements. We prove the excellent property of a two-step scheme, which says we can refine a consistent estimator to be asymptotically efficient by one step of Gauss-Newton iteration. Grounded on this result, we design the GN-ULS estimator, which reduces the computation time significantly compared to previous methods and presents the possibility of using only UWB for real-time state estimation.
引用
收藏
页码:1954 / 1960
页数:7
相关论文
共 26 条
  • [1] Model of Distance and Bandwidth Dependency of TOA-Based UWB Ranging Error
    Bellusci, Giovanni
    Janssen, Gerard J. M.
    Yan, Junlin
    Tiberius, Christian C. J. M.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ULTRA-WIDEBAND, VOL 3, PROCEEDINGS, 2008, 3 : 193 - +
  • [2] Bonsignori C, 2020, INT CONF INTEL ENVIR, P80, DOI 10.1109/IE49459.2020.9154983
  • [3] VIR-SLAM: visual, inertial, and ranging SLAM for single and multi-robot systems
    Cao, Yanjun
    Beltrame, Giovanni
    [J]. AUTONOMOUS ROBOTS, 2021, 45 (06) : 905 - 917
  • [4] Accurate Localization of a Rigid Body Using Multiple Sensors and Landmarks
    Chen, Shanjie
    Ho, K. C.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (24) : 6459 - 6472
  • [5] Rigid Body Localization Using Sensor Networks
    Chepuri, Sundeep Prabhakar
    Leus, Geert
    van der Veen, Alle-Jan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (18) : 4911 - 4924
  • [6] Indoor Intelligent Mobile Robot Localization Using Fuzzy Compensation and Kalman Filter to Fuse the Data of Gyroscope and Magnetometer
    Chung, Hung-Yuan
    Hou, Chun-Cheng
    Chen, Yu-Shan
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (10) : 6436 - 6447
  • [7] Graph Optimization Approach to Range-Based Localization
    Fang, Xu
    Wang, Chen
    Thien-Minh Nguyen
    Xie, Lihua
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (11): : 6830 - 6841
  • [8] Mobile robot localization based on Ultra-Wide-Band ranging: A particle filter approach
    Gonzalez, J.
    Blanco, J. L.
    Galindo, C.
    Ortiz-de-Galisteo, A.
    Fernandez-Madrigal, J. A.
    Moreno, F. A.
    Martinez, J. L.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (05) : 496 - 507
  • [9] SnapLoc: An Ultra-Fast UWB-Based Indoor Localization System for an Unlimited Number of Tags
    Grosswindhager, Bernhard
    Stocker, Michael
    Rath, Michael
    Boano, Carlo Alberto
    Roemer, Kay
    [J]. IPSN '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, 2019, : 61 - 72
  • [10] Rotation Averaging
    Hartley, Richard
    Trumpf, Jochen
    Dai, Yuchao
    Li, Hongdong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 103 (03) : 267 - 305