Strength and Microstructure Assessment of Partially Replaced Ordinary Portland Cement and Calcium Sulfoaluminate Cement with Pozzolans and Spent Coffee Grounds

被引:3
作者
Pushpan, Soorya [1 ]
Ziga-Carbarin, Javier [1 ]
Rodriguez-Barboza, Loth I. [1 ]
Sanal, K. C. [2 ]
Acevedo-Davila, Jorge L. L. [3 ]
Balonis, Magdalena [4 ]
Gomez-Zamorano, Lauren Y. Y. [1 ]
机构
[1] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Electr, Programa Doctoral Ingn Mat, Ave Univ S-N,Ciudad Univ, San Nicolas De Los Garza 66455, Nuevo Leon, Mexico
[2] Univ Autonoma Nuevo Leon, Fac Ciencias Quim, Programa Doctoral Ingn Mat, Ave Univ S-N,Ciudad Univ, San Nicolas De Los Garza 66455, Nuevo Leon, Mexico
[3] Univ Autonoma Coahuila, Ctr Invest Geociencias Aplicadas, Nueva Rosita 26830, Coahuila De Zar, Mexico
[4] Univ Calif Los Angeles UCLA, Dept Mat Sci & Engn, 410 Westwood Plaza, 2121K Engn 5, Los Angeles, CA 90095 USA
关键词
ordinary Portland cement; pozzolans; spent coffee grounds; calcium sulfoaluminate cement; composite cement; fly ash; C-S-H; DELAYED ETTRINGITE FORMATION; NATURAL VOLCANIC POZZOLAN; FLY-ASH FINENESS; RICE HUSK ASH; COMPRESSIVE STRENGTH; EARLY HYDRATION; BELITE CEMENT; OPC; HEAT;
D O I
10.3390/ma16145006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supplementary cementitious materials are considered a viable and affordable way to reduce CO2 emissions from the cement industry's perspective since they can partially or nearly entirely replace ordinary Portland cement (OPC). This study compared the impact of adding spent coffee grounds (SCGs), fly ash (FA), and volcanic ash (VA) to two types of cement: OPC and calcium sulfoaluminate cement (CSA). Cement samples were characterized using compressive strength measurements (up to 210 days of curing), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), attenuated total reflection infrared spectroscopy, and hydration temperature measurements. In all the studied systems, the presence of SCGs reduced compressive strength and delayed the hydration process. CSA composite cement containing 3.5% SCGs, 30% FA, and 30% VA showed compressive strength values of 20.4 MPa and 20.3 MPa, respectively, meeting the minimum requirement for non-structural applications. Additionally, the results indicate a formation of cementitious gel, calcium silicate hydrate (C-S-H) in the OPC-based composite cements, and calcium alumino-silicate hydrate (C-A-S-H) as well as ettringite in the CSA-based composite cements.
引用
收藏
页数:24
相关论文
共 134 条
[31]   Effect of fly ash fineness on compressive strength and pore size of blended cement paste [J].
Chindaprasirt, P ;
Jaturapitakkul, C ;
Sinsiri, T .
CEMENT & CONCRETE COMPOSITES, 2005, 27 (04) :425-428
[32]   Synthesis and hydration of alite-calcium sulfoaluminate cement [J].
Chitvoranund, Natechanok ;
Winnefeld, Frank ;
Hargis, Craig W. ;
Sinthupinyo, Sakprayut ;
Lothenbach, Barbara .
ADVANCES IN CEMENT RESEARCH, 2017, 29 (03) :101-111
[33]   The Application of Spent Coffee Grounds and Tea Wastes as Additives in Alkali-Activated Bricks [J].
Chung, Leopold Lee Poh ;
Wong, Yat Choy ;
Arulrajah, Arul .
WASTE AND BIOMASS VALORIZATION, 2021, 12 (11) :6273-6291
[34]   Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance [J].
Dhandapani, Yuvaraj ;
Santhanam, Manu .
CEMENT & CONCRETE COMPOSITES, 2017, 84 :36-47
[35]   Very High Volume Fly Ash Cements. Early Age Hydration Study Using Na2SO4 as an Activator [J].
Donatello, Shane ;
Fernandez-Jimenez, Ana ;
Palomo, Angel .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (03) :900-906
[36]   Preparation of calcium sulfoaluminate-belite cement from marble sludge waste [J].
El-Alfi, E. A. ;
Gado, R. A. .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 113 :764-772
[37]  
Escalante-Garcia J., 1996, THESIS U SHEFFIELD S
[38]   The chemical composition and microstructure of hydration products in blended cements [J].
Escalante-Garcia, JI ;
Sharp, JH .
CEMENT & CONCRETE COMPOSITES, 2004, 26 (08) :967-976
[39]   Nonevaporable water from neat OPC and replacement materials in composite cements hydrated at different temperatures [J].
Escalante-Garcia, JI .
CEMENT AND CONCRETE RESEARCH, 2003, 33 (11) :1883-1888
[40]   Effect of temperature on the hydration of the main clinker phases in Portland cements: Part II, blended cements [J].
Escalante-Garcia, JI ;
Sharp, JH .
CEMENT AND CONCRETE RESEARCH, 1998, 28 (09) :1259-1274