On the stability and convergence of a semi-discrete discontinuous Galerkin scheme to the kinetic Cucker-Smale model

被引:1
作者
Gargano, Francesco [1 ]
Ha, Seung-Yeal [2 ]
Sciacca, Vincenzo [3 ]
机构
[1] Univ Palermo, Dept Engn, Viale Sci,Ed 8, I-90133 Palermo, Italy
[2] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[3] Univ Palermo, Dept Math & Comp Sci, Via Archirafi 34, I-90123 Palermo, Italy
基金
新加坡国家研究基金会;
关键词
Flocking; Clusters; Discontinuous Galerkin method; Kinetic model; ASYMPTOTIC FLOCKING; KURAMOTO MODEL; DYNAMICS; LEADERSHIP; BEHAVIOR;
D O I
10.1007/s11587-023-00791-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study analytical properties of a semi-discrete discontinuous Galerkin (DG) scheme for the kinetic Cucker-Smale (CS) equation. The kinetic CS equation appears in the mean-field limit of the particle CS model and it corresponds to the dissipative Vlasov type equation approximating the large particle CS system. For this proposed DG scheme, we show that it exhibits analytical properties such as the conservation of mass, L-2-stability and convergence to the sufficiently regular solution, as the mesh-size tends to zero. In particular, we verify that the convergence rate of the DG numerical solution to the sufficiently regular kinetic solution is dependent on the Sobolev regularity of the kinetic soluiton. We also present several numerical simulations for low-dimensional cases.
引用
收藏
页码:157 / 187
页数:31
相关论文
共 49 条
  • [1] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [2] Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises
    Ahn, Shin Mi
    Ha, Seung-Yeal
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [3] DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV-POISSON PROBLEM
    Ayuso De Dios, Blanca
    Carrillo, Jose A.
    Shu, Chi-Wang
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (12)
  • [4] Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study
    Ballerini, M.
    Calbibbo, N.
    Candeleir, R.
    Cavagna, A.
    Cisbani, E.
    Giardina, I.
    Lecomte, V.
    Orlandi, A.
    Parisi, G.
    Procaccini, A.
    Viale, M.
    Zdravkovic, V.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) : 1232 - 1237
  • [5] Bellomo N, 2017, MODEL SIMUL SCI ENG, P1, DOI 10.1007/978-3-319-49996-3
  • [6] A quest toward a mathematical theory of the dynamics of swarms
    Bellomo, Nicola
    Ha, Seung-Yeal
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (04) : 745 - 770
  • [7] Stabilization mechanisms in discontinuous Galerkin finite element methods
    Brezzi, F.
    Cockburn, B.
    Marini, L. D.
    Suli, E.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3293 - 3310
  • [8] Asymptotic flocking dynamics of a relativistic Cucker-Smale flock under singular communications
    Byeon, Junhyeok
    Ha, Seung-Yeal
    Kim, Jeongho
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (01)
  • [9] Carrillo Jose A., 2014, ESAIM: Proceedings and Surveys, V47, P17, DOI 10.1051/proc/201447002
  • [10] ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL
    Carrillo, J. A.
    Fornasier, M.
    Rosado, J.
    Toscani, G.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) : 218 - 236