Shear behaviour of seawater sea-sand coral aggregate concrete beams reinforced with FRP strip stirrups

被引:17
|
作者
Yuan, Fang [1 ,2 ,3 ]
Wang, Yian [4 ]
Li, Peng-Da [1 ,2 ,3 ]
Li, Huihui [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Coll Civil & Transportat Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Prov Key Lab Durabil Marine Civil Engn, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Key Lab Resilient Infrastructures Coastal Cities, Minist Educ, Shenzhen 518060, Peoples R China
[4] East China Jiaotong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
Seawater sea-sand coral aggregate concrete  (SSCAC); Beam; Fiber-reinforced polymer (FRP); Strip stirrup; Shear behavior; MECHANICAL-PROPERTIES; PERFORMANCE;
D O I
10.1016/j.engstruct.2023.116332
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The preparation of concrete for remote islands or reefs using locally available seawater, sea sand, and coral aggregate can greatly shorten the construction period and mitigate the shortage of river sand and natural gravel resources. This study is the first to experimentally investigate the shear behaviour of seawater sea-sand coral aggregate concrete (SSCAC) beams reinforced with non-corrosive carbon fibre-reinforced polymer (CFRP) strip stirrups. The test parameters included concrete strength, concrete type, and stirrup configuration. The experi-mental results suggested that CFRP-reinforced SSCAC beams exhibited a brittle shear failure mode because of the sudden CFRP rupture at the bend portions. The ratio of the measured maximum strain to the ultimate tensile strain of the CFRP strip stirrups varied from 36.6% to 47.8%. The critical diagonal shear cracks of SSCAC beams directly penetrated through the coral aggregates and split the aggregates, whereas those in the natural aggregate concrete (NAC) beams bypassed the natural gravel. In this regard, the SSCAC beams exhibited approximately 10% lower shear strength than their NAC counterparts owing to the loss of the aggregate interlocking effect after the occurrence of smooth diagonal shear cracks. The higher the strength grade of SSCAC, the greater the shear strength and service load.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] FRP bars reinforced seawater sea-sand engineered cementitious composites beams with various salinities: Shear behaviors and cost effectiveness
    Liao, Qiao
    Yu, Jiangtao
    Dong, Fangyuan
    Su, Yuanrui
    Yu, Kequan
    Journal of Building Engineering, 2024, 83
  • [22] Simplified equivalent design for novel hybrid steel-FRP composite bars and closed-type FRP stirrups reinforced seawater sea-sand concrete columns
    Han, Shiwen
    Xiao, Gang
    Tan, Wei
    Mai, Peirong
    Zhou, Ao
    Yu, Jing
    Ou, Jinping
    ENGINEERING STRUCTURES, 2025, 331
  • [23] FRP shear contribution in externally bonded reinforced concrete beams with stirrups
    Fazli, H.
    Teo, W.
    ENGINEERING CHALLENGES FOR SUSTAINABLE FUTURE, 2016, : 63 - 68
  • [24] Mechanical properties of modified coral aggregate seawater sea-sand concrete: Experimental study and constitutive model
    Wang, Fei
    Sun, Yingzhi
    Xue, Xuanyi
    Wang, Neng
    Zhou, Junhong
    Hua, Jianmin
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [25] Shear tests of FRP-reinforced concrete beams without stirrups
    Tureyen, AK
    Frosch, RJ
    ACI STRUCTURAL JOURNAL, 2002, 99 (04) : 427 - 434
  • [26] Structural behaviour of small GFRP-reinforced seawater sea-sand fiber reinforced concrete culverts
    Mashayekhi, Amirhesam
    Hassanli, Reza
    Zhuge, Yan
    Ma, Xing
    Chow, Christopher W. K.
    Bazli, Milad
    Manalo, Allan
    STRUCTURES, 2024, 69
  • [27] Bearing behavior and serviceability evaluation of seawater sea-sand concrete beams reinforced with BFRP bars
    Hua, Yuntao
    Yin, Shiping
    Feng, Linli
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 243
  • [28] Axial compressive behavior of seawater sea-sand coral aggregate concrete-filled circular FRP-steel composite tube columns
    Wang, Gaofei
    Wei, Yang
    Miao, Kunting
    Zheng, Kaiqi
    Dong, Fenghui
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 315
  • [29] Durability of BFRP bars and BFRP reinforced seawater sea-sand concrete beams immersed in water and simulated seawater
    Lu, Zhongyu
    Li, Wenkang
    Zeng, Xiaoyu
    Pan, Yunfeng
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 363
  • [30] Fracture analysis of seawater sea-sand recycled aggregate concrete beams: Experimental study and analytical model
    Han, Xiangyu
    Jia, Bin
    Zeng, Yu
    Liu, Jinqiao
    Zhao, Qilong
    Yang, Zhenchao
    Li, Qionglin
    Hu, Xiaozhi
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 134