Graphene and Poly(3,4-ethylenedioxythiophene)-Polystyrene Sulfonate Hybrid Nanostructures for Input/Output Bioelectronics

被引:10
作者
Garg, Raghav [1 ]
Balakrishnan, Gaurav [1 ]
Rashid, Reem B. [2 ,3 ]
Gershanok, Samuel A. [1 ]
Roman, Daniel San [1 ]
Wang, Yingqiao [1 ]
Kouassi, Peter C. [2 ]
Rivnay, Jonathan [2 ,3 ]
Cohen-Karni, Tzahi [1 ,4 ]
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Simpson Querrey Inst, Evanston, IL 60611 USA
[4] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
关键词
bioelectronics; hybrid nanomaterials; graphene; PEDOT; PSS; recording; stimulation; NEURAL STIMULATION; ELECTRODES; PEDOTPSS; MICROELECTRODES; CAPACITANCE; CHALLENGES; INTERFACES; IMPEDANCE; ARRAYS;
D O I
10.1021/acsanm.3c00849
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The ability to senseand stimulate cellular and tissue electrophysiologyis fundamental to input/output bioelectronics. Their functionalityis primarily governed by the structural and functional propertiesof the constituent electrode materials. Conventional electrode materialsare hindered by their two-dimensional topology, high electrochemicalimpedances, low charge injection capacities, and limited stabilityover chronic timescales. Here, we propose a strategy for obtaininghigh-surface-area hybrid-nanomaterial for efficient I/O bioelectronicsby conformally templating conductive polymer poly-(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) onto nanowire-templated three-dimensional (3D)fuzzy graphene (NT-3DFG). The result is a high-performance electrodematerial that can leverage the exceptional surface area of NT-3DFGand the volumetric charge storage properties of PEDOT:PSS. Owing toits high surface area, NT-3DFG microelectrodes exhibit lower electrodeimpedance and up to 35-fold greater charge injection capacity (CIC)compared to conventional metal microelectrodes. Conformally templatingPEDOT:PSS onto NT-3DFG further reduces electrode impedance and enhancesCIC by 125-fold compared to conventional metal microelectrodes. Moreover,the NT-3DFG-based nanomaterials exhibit high functional stability.Our results highlight the importance of extrapolating electrode topographyto 3D and developing hybrid nanomaterials for miniaturized microelectrodesfor functional bioelectronics.
引用
收藏
页码:8495 / 8505
页数:11
相关论文
共 67 条
[1]   Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram [J].
Achermann, P ;
Borbely, AA .
NEUROSCIENCE, 1997, 81 (01) :213-222
[2]   Organic-Inorganic Hybrid Nanomaterials [J].
Ananikov, Valentine P. .
NANOMATERIALS, 2019, 9 (09)
[3]  
[Anonymous], 2001, Electrochemical Methods: Fundamentals and Applications, V2 Bard, A. J. F
[4]   Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine [J].
Balakrishnan, Gaurav ;
Song, Jiwoo ;
Mou, Chenchen ;
Bettinger, Christopher J. .
ADVANCED MATERIALS, 2022, 34 (10)
[5]   The action potential in mammalian central neurons [J].
Bean, Bruce P. .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (06) :451-465
[6]   Scaling of capacitance of PEDOT:PSS: volumevs.area [J].
Bianchi, Michele ;
Carli, Stefano ;
Di Lauro, Michele ;
Prato, Mirko ;
Murgia, Mauro ;
Fadiga, Luciano ;
Biscarini, Fabio .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (32) :11252-11262
[7]   Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics [J].
Boehler, Christian ;
Carli, Stefano ;
Fadiga, Luciano ;
Stieglitz, Thomas ;
Asplund, Maria .
NATURE PROTOCOLS, 2020, 15 (11) :3557-3578
[8]   Deep brain stimulation [J].
Breit, S ;
Schulz, JB ;
Benabid, AL .
CELL AND TISSUE RESEARCH, 2004, 318 (01) :275-288
[9]   The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes [J].
Buzsaki, Gyoergy ;
Anastassiou, Costas A. ;
Koch, Christof .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (06) :407-420
[10]   3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution [J].
Castagnola, Elisa ;
Garg, Raghav ;
Rastogi, Sahil K. ;
Cohen-Karni, Tzahi ;
Cui, Xinyan Tracy .
BIOSENSORS & BIOELECTRONICS, 2021, 191