Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites

被引:5
作者
De la Fuente, Andres [1 ]
Castillo, Rodrigo [2 ]
Onate, Angelo [2 ,3 ]
Hermosilla, Rodolfo [1 ]
Escudero, Benjamin [1 ]
Sepulveda, Joaquin [1 ]
Vargas-Silva, Gustavo [4 ]
Melendrez, Manuel F. [3 ]
Tuninetti, Victor [5 ]
Medina, Carlos [1 ]
机构
[1] Univ Concepcion, Dept Ingn Mecan, Concepcion 4030000, Chile
[2] Univ Bio Bio, Fac Ingn, Dept Ingn Mecan, Concepcion 4051381, Chile
[3] Univ Concepcion, Dept Ingn Mat, Edmundo Larenas 270,Apartado 160-C, Concepcion 4070409, Chile
[4] Publ Univ Navarre UPNA, Engn Dept, Campus Arrosadia, Pamplona 31006, Spain
[5] Univ La Frontera, Dept Mech Engn, Francisco Salazar 01145, Temuco 4780000, Chile
关键词
3D printing; Thermoplastic; Continuous reinforcement; Laminates; Mechanical properties; CONTINUOUS CARBON; POLYMER COMPOSITES; PRE-DEPOSITION; FABRICATION; DAMAGE; PERFORMANCE; STIFFNESS; BEHAVIOR; FATIGUE; DESIGN;
D O I
10.1007/s00170-023-11569-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
3D-printed thermoplastic parts with continuous fiber reinforcement are known to offer mechanical performance that is highly dependent on design variables and printing parameters. In this work, the role of the reinforcement distribution on the mechanical response of glass fiber-reinforced thermoplastics printed using the fused filament fabrication (FFF) technique is evaluated. Laminates with alternating and continuous reinforcement architecture as well as different fiber orientations such as isotropic (0 degrees, 90 degrees, and 45 degrees) and concentric configurations are characterized from monotonic tensile and flexural loads. The resulting superior macromechanical performance in terms of higher stiffness and strength achieved in samples reinforced with alternating fiber plies is correlated with the micromechanical fractography characteristics and interlaminar shear capacity.
引用
收藏
页码:1575 / 1583
页数:9
相关论文
共 60 条
[1]  
[Anonymous], 2014, STANDARD TEST METHOD
[2]  
[Anonymous], 2018, STANDARD TEST METHOD, DOI DOI 10.1520/D3518_D3518M-18
[3]  
Bai J, 2012, P 23 ANN INT SOL FRE, P98, DOI [10.26153/tsw/15336, DOI 10.26153/TSW/15336]
[4]   Mechanical properties of structures produced by 3D printing from composite materials [J].
Barnik, Frantisek ;
Vasko, Milan ;
Saga, Milan ;
Handrik, Marian ;
Sapietova, Alzbeta .
XXIII POLISH-SLOVAK SCIENTIFIC CONFERENCE ON MACHINE MODELLING AND SIMULATIONS (MMS 2018), 2019, 254
[5]   Fused filament fabrication of fiber-reinforced polymers: A review [J].
Brenken, Bastian ;
Barocio, Eduardo ;
Favaloro, Anthony ;
Kunc, Vlastimil ;
Pipes, R. Byron .
ADDITIVE MANUFACTURING, 2018, 21 :1-16
[6]   Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling [J].
Caminero, M. A. ;
Chacon, J. M. ;
Garcia-Moreno, I ;
Reverte, J. M. .
POLYMER TESTING, 2018, 68 :415-423
[7]   Effect of stacking sequence on Charpy impact and flexural damage behavior of composite laminates [J].
Caminero, M. A. ;
Rodriguez, G. P. ;
Munoz, V. .
COMPOSITE STRUCTURES, 2016, 136 :345-357
[8]   Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory [J].
Casavola, Caterina ;
Cazzato, Alberto ;
Moramarco, Vincenzo ;
Pappalettere, Carmine .
MATERIALS & DESIGN, 2016, 90 :453-458
[9]   Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties [J].
Chacon, J. M. ;
Caminero, M. A. ;
Nunez, P. J. ;
Garcia-Plaza, E. ;
Garcia-Moreno, I. ;
Reverte, J. M. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 181
[10]   Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection [J].
Chacon, J. M. ;
Caminero, M. A. ;
Garcia-Plaza, E. ;
Nunez, P. J. .
MATERIALS & DESIGN, 2017, 124 :143-157