Deep learning enhanced noise spectroscopy of a spin qubit environment

被引:6
作者
Martina, Stefano [1 ,2 ]
Hernandez-Gomez, Santiago [2 ,3 ]
Gherardini, Stefano [2 ,4 ]
Caruso, Filippo [1 ,2 ,5 ]
Fabbri, Nicole [2 ,5 ]
机构
[1] Univ Firenze, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, Italy
[2] Univ Firenze, European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, Italy
[3] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[4] Consiglio Nazl Ric CNR INO, Ist Nazl Ott, Area Sci Pk, I-34149 Trieste, Italy
[5] Consiglio Nazl Ric CNR INO, Ist Nazl Ott, I-50019 Sesto Fiorentino, Italy
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 02期
基金
欧盟地平线“2020”;
关键词
deep learning; neural networks; machine learning; quantum machine learning; quantum noise; quantum sensing; quantum noise spectroscopy; DECOHERENCE;
D O I
10.1088/2632-2153/acd2a6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The undesired interaction of a quantum system with its environment generally leads to a coherence decay of superposition states in time. A precise knowledge of the spectral content of the noise induced by the environment is crucial to protect qubit coherence and optimize its employment in quantum device applications. We experimentally show that the use of neural networks (NNs) can highly increase the accuracy of noise spectroscopy, by reconstructing the power spectral density that characterizes an ensemble of carbon impurities around a nitrogen-vacancy (NV) center in diamond. NNs are trained over spin coherence functions of the NV center subjected to different Carr-Purcell sequences, typically used for dynamical decoupling (DD). As a result, we determine that deep learning models can be more accurate than standard DD noise-spectroscopy techniques, by requiring at the same time a much smaller number of DD sequences.
引用
收藏
页数:12
相关论文
共 84 条
  • [1] One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment
    Abobeih, M. H.
    Cramer, J.
    Bakker, M. A.
    Kalb, N.
    Markham, M.
    Twitchen, D. J.
    Taminiau, T. H.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] NV center based nano-NMR enhanced by deep learning
    Aharon, Nati
    Rotem, Amit
    McGuinness, Liam P.
    Jelezko, Fedor
    Retzker, Alex
    Ringel, Zohar
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [3] Direct measurement of the system-environment coupling as a tool for understanding decoherence and dynamical decoupling
    Almog, Ido
    Sagi, Yoav
    Gordon, Goren
    Bensky, Guy
    Kurizki, Gershon
    Davidson, Nir
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (15)
  • [4] Measuring the Spectrum of Colored Noise by Dynamical Decoupling
    Alvarez, Gonzalo A.
    Suter, Dieter
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (23)
  • [5] Bergstra J., 2013, P 30 INT C MACH LEAR, V28, P115, DOI DOI 10.5555/3042817.3042832
  • [6] Bergstra J., 2011, ADV NEURAL INFORM PR, P2546
  • [7] Dynamical decoupling sequence construction as a filter-design problem
    Biercuk, M. J.
    Doherty, A. C.
    Uys, H.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (15)
  • [8] Optimized dynamical decoupling in a model quantum memory
    Biercuk, Michael J.
    Uys, Hermann
    VanDevender, Aaron P.
    Shiga, Nobuyasu
    Itano, Wayne M.
    Bollinger, John J.
    [J]. NATURE, 2009, 458 (7241) : 996 - 1000
  • [9] Bishop C M., 2006, Pattern recognition and machine learning, Vvol 4
  • [10] Bordes A., P 14 INT C ART INT S, P315