Double Impact-Based Piezoelectric Energy Harvester for Low-Frequency Operation

被引:3
|
作者
Machado, Sebastian Pablo [1 ]
Febbo, Mariano [2 ]
Osinaga, Santiago Manuel [1 ]
机构
[1] Univ Tecnol Nacl FRBB CIC, Grp Invest Multifis Aplicada GIMAP, RA-8000 Bahia Blanca, Argentina
[2] Univ Nacl Sur UNS, Dept Fis, Inst Fis Sur IFISUR, CONICET, RA-8000 Bahia Blanca, Argentina
关键词
Double impact; energy harvesting; low frequency; low impedance; piezoelectric; wide bandwidth; DRIVEN;
D O I
10.1109/JSEN.2022.3226537
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The article presents a theoretical, numerical, and experimental study of a frequency upconverting (FUC) piezoelectric vibration energy harvester with a single low-frequency resonator that impacts twice per oscillation cycle on a single high-frequency unimorph generator. The model's relevant physical aspects are specially designed to enhance the electrical output power over a wide-frequency range in the low-frequency excitation. The proposed double impact strategy allows obtaining a nearly constant output volt-age, in contrast to typical upconverting mechanisms whose output voltage decays quickly in time. The device is safe from fatigue and can be used in high acceleration scenarios because the large displacements are limited by the generating beam, which acts as a natural stopper in an upward and downward directions. The prototype is designed to obtain a low value of optimal resistance with enhanced broadband performance below 25 Hz. The double impact FUC energy harvester's performance is improved by adjusting the gap distance, the thickness of the generating beam, and the tip mass of the driving beam. The harvester reports 1428-mu W peak output power at 20 Hz and 400 mu W of average power for a usable bandwidth from 17.5 to 22 Hz in health monitoring systems. [GRAPHICS]
引用
收藏
页码:1081 / 1090
页数:10
相关论文
共 50 条
  • [21] Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism
    HAN MengDi
    ZHANG XiaoSheng
    LIU Wen
    SUN XuMing
    PENG XuHua
    ZHANG HaiXia
    Science China(Technological Sciences), 2013, (08) : 1835 - 1841
  • [22] Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism
    Han MengDi
    Zhang XiaoSheng
    Liu Wen
    Sun XuMing
    Peng XuHua
    Zhang HaiXia
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (08) : 1835 - 1841
  • [23] Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam
    Dongxing Cao
    Wei Xia
    Wenhua Hu
    Applied Mathematics and Mechanics, 2019, 40 : 1777 - 1790
  • [24] Research on Low-Frequency Multi-Directional Piezoelectric Energy Harvester with Combined Cantilever Beam
    Ren, Qingying
    Liu, Yuxuan
    Wang, Debo
    CHINESE JOURNAL OF ELECTRONICS, 2025, 34 (01) : 156 - 164
  • [25] Low-frequency nanocomposite piezoelectric energy harvester with embedded zinc oxide nanowires
    Meschino, Mark
    Wang, Lingyun
    Xu, Haitong
    Moradi-Dastjerdi, Rasool
    Behdinan, Kamran
    POLYMER COMPOSITES, 2021, 42 (09) : 4573 - 4585
  • [26] Development of Mechanical Coupling For Piezoelectric Energy Harvester Adapted to Low-Frequency Vibration
    Untoro, Tri
    Suprijanto
    Ekawati, Estiyanti
    2015 4TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATIONS, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING (ICICI-BME), 2015, : 134 - 137
  • [27] A hybrid piezoelectric-triboelectric generator for low-frequency and broad-bandwidth energy harvesting
    Li, Zhongjie
    Saadatnia, Zia
    Yang, Zhengbao
    Naguib, Hani
    ENERGY CONVERSION AND MANAGEMENT, 2018, 174 : 188 - 197
  • [28] Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass
    He, Xuefeng
    Teh, Kwok Siong
    Li, Siyu
    Dong, Linxi
    Jiang, Senlin
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 259 : 171 - 179
  • [29] Electromechanical Modeling of the Low-Frequency Zigzag Micro-Energy Harvester
    Karami, M. Amin
    Inman, Daniel J.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (03) : 271 - 282
  • [30] Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network
    Jung, Hyun Jun
    Song, Yooseob
    Hong, Seong Kwang
    Yang, Chan Ho
    Hwang, Sung Joo
    Jeong, Se Yeong
    Sung, Tae Hyun
    SENSORS AND ACTUATORS A-PHYSICAL, 2015, 222 : 314 - 321