Bio-Inspired Artificial Perceptual Devices for Neuromorphic Computing and Gesture Recognition

被引:41
作者
Chen, Fandi [1 ]
Zhang, Shuo [1 ]
Hu, Long [1 ]
Fan, Jiajun [1 ]
Lin, Chun-Ho [1 ]
Guan, Peiyuan [1 ]
Zhou, Yingze [1 ]
Wan, Tao [1 ]
Peng, Shuhua [2 ]
Wang, Chun-Hui [2 ]
Wu, Liao [2 ]
Furlong, Teri McLean [3 ]
Valanoor, Nagarajan [1 ]
Chu, Dewei [1 ]
机构
[1] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Univ New South Wales, Sch Mech Engn, Sydney, NSW 2052, Australia
[3] Univ New South Wales, Sch Med Sci, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
artificial synapses; e-skins; gesture recognitions; neuromorphic computing; strain sensors; FILMS; MECHANISMS;
D O I
10.1002/adfm.202300266
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Artificial perception technologies capable of sensing and feeling mechanical stimuli like human skins are critical enablers for electronic skins (E-Skins) needed to achieve artificial intelligence. However, most of the reported electronic skin systems lack the capability to process and interpret the sensor data. Herein, a new design of artificial perceptual system integrating ZnO-based synaptic devices with Pt/carbon nanofibers-based strain sensors for stimuli detection and information processing is presented. Benefiting from the controllable ion migration after indium doping, the device can emulate various essential functions, such as short-term/long-term plasticity, paired-pulse facilitation, excitatory post-synaptic current, and synaptic plasticity depending on the number, frequency, amplitude, and width of the applied pulses. The Pt/carbon nanofibers-based strain sensors can detect subtle human motion and convert mechanical stimuli into electrical signals, which are further processed by the ZnO devices. By attaching the integrated devices to finger joints, it is demonstrated that they can recognize handwriting and gestures with a high accuracy. This work offers new insights in designing artificial synapses and sensors to process and recognize information for neuromorphic computing and artificial intelligence applications.
引用
收藏
页数:10
相关论文
共 65 条
[21]   Sodium-Doped Titania Self-Rectifying Memristors for Crossbar Array Neuromorphic Architectures [J].
Kim, Sung-Eun ;
Lee, Jin-Gyu ;
Ling, Leo ;
Liu, Stephanie E. ;
Lim, Hyung-Kyu ;
Sangwan, Vinod K. ;
Hersam, Mark C. ;
Lee, Hong-Sub .
ADVANCED MATERIALS, 2022, 34 (06)
[22]   A bioinspired flexible organic artificial afferent nerve [J].
Kim, Yeongin ;
Chortos, Alex ;
Xu, Wentao ;
Liu, Yuxin ;
Oh, Jin Young ;
Son, Donghee ;
Kang, Jiheong ;
Foudeh, Amir M. ;
Zhu, Chenxin ;
Lee, Yeongjun ;
Niu, Simiao ;
Liu, Jia ;
Pfattner, Raphael ;
Bao, Zhenan ;
Lee, Tae-Woo .
SCIENCE, 2018, 360 (6392) :998-+
[23]   Ambient Stable All Inorganic CsCu2I3 Artificial Synapses for Neurocomputing [J].
Kwak, Kyung Ju ;
Baek, Ji Hyun ;
Lee, Da Eun ;
Im, In Hyuk ;
Kim, Jaehyun ;
Kim, Seung Ju ;
Lee, Yoon Jung ;
Kim, Jae Young ;
Jang, Ho Won .
NANO LETTERS, 2022, 22 (14) :6010-6017
[24]   Memristive technologies for data storage, computation, encryption, and radio-frequency communication [J].
Lanza, Mario ;
Sebastian, Abu ;
Lu, Wei D. ;
Le Gallo, Manuel ;
Chang, Meng-Fan ;
Akinwande, Deji ;
Puglisi, Francesco M. ;
Alshareef, Husam N. ;
Liu, Ming ;
Roldan, Juan B. .
SCIENCE, 2022, 376 (6597) :1066-+
[25]   Dual-Gated MoS2Memtransistor Crossbar Array [J].
Lee, Hong-Sub ;
Sangwan, Vinod K. ;
Rojas, William A. Gaviria ;
Bergeron, Hadallia ;
Jeong, Hye Yun ;
Yuan, Jiangtan ;
Su, Katherine ;
Hersam, Mark C. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (45)
[26]   On-Demand Reconfiguration of Nanomaterials: When Electronics Meets Ionics [J].
Lee, Jihang ;
Lu, Wei D. .
ADVANCED MATERIALS, 2018, 30 (01)
[27]   Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system [J].
Li, Sizhao ;
Zeng, Fei ;
Chen, Chao ;
Liu, Hongyan ;
Tang, Guangsheng ;
Gao, Shuang ;
Song, Cheng ;
Lin, Yisong ;
Pan, Feng ;
Guo, Dong .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (34) :5292-5298
[28]   The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere [J].
Lin, SS ;
Huang, JL ;
Sajgalik, P .
SURFACE & COATINGS TECHNOLOGY, 2004, 185 (2-3) :254-263
[29]   Nitrogen-induced ultralow power switching in flexible ZnO-based memristor for artificial synaptic learning [J].
Lin, Ya ;
Liu, Jilin ;
Shi, Jiajuan ;
Zeng, Tao ;
Shan, Xuanyu ;
Wang, Zhongqiang ;
Zhao, Xiaoning ;
Xu, Haiyang ;
Liu, Yichun .
APPLIED PHYSICS LETTERS, 2021, 118 (10)
[30]   Organic Biomimicking Memristor for Information Storage and Processing Applications [J].
Liu, Gang ;
Wang, Cheng ;
Zhang, Wenbin ;
Pan, Liang ;
Zhang, Chaochao ;
Yang, Xi ;
Fan, Fei ;
Chen, Yu ;
Li, Run-Wei .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (02)