Non-contact quartz-enhanced photoacoustic spectroscopy

被引:19
|
作者
Lin, Haoyang [1 ,2 ]
Wang, Chenglong [1 ,2 ]
Lin, Leqing [1 ,2 ]
Wang, Minshuai [3 ]
Zhu, Wenguo [1 ,2 ]
Zhong, Yongchun [1 ,2 ]
Yu, Jianhui [1 ,2 ]
Tittel, Frank [4 ]
Zheng, Huadan [1 ,2 ]
机构
[1] Jinan Univ, Guangdong Prov Key Lab Opt Fiber Sensing & Commun, Guangzhou 510632, Peoples R China
[2] Jinan Univ, Dept Optoelect Engn, Guangzhou 510632, Peoples R China
[3] Jimei Univ, Sch Sci, Dept Phys, Xiamen 361021, Peoples R China
[4] Rice Univ, Dept Elect & Comp Engn, 100 Main St, Houston, TX 77005 USA
基金
中国国家自然科学基金;
关键词
INDUCED THERMOELASTIC SPECTROSCOPY; CRYSTAL TUNING FORK; CARBON-MONOXIDE; GAS-DETECTION; SENSOR; QEPAS; SPECTROPHONE; OPTIMIZATION; SYSTEM; LASER;
D O I
10.1063/5.0134744
中图分类号
O59 [应用物理学];
学科分类号
摘要
Non-contact quartz-enhanced photoacoustic spectroscopy (NC-QEPAS) was proposed and developed for trace gas analysis. The NC-QEPAS aims at solving the problem that the quartz tuning fork (QTF) must be immersed in the gases for photoacoustic wave transducing, which limits its application for corrosive and dusty gas sensing. In this work, the QTF was isolated from the gas, realizing non-contact detection. An elastic parylene film was synthesized and then patched to the slit of a QEPAS gas cell. With an optimized coupling effect, the parylene film shows a resonance enhancement with the QTF and acoustic micro-resonator, realizing non-contact photoacoustic detection of gas. The NC-QEPAS not only increases the photoacoustic signal amplitude but also decreases the background noise. Compared to traditional contact QEPAS with QTF immersed in the gas, the NC-QEPAS shows a signal-to-noise enhancement factor of 13. A normalized noise equivalent absorption coefficient of 8.8 x 10(-9) cm (1) W Hz (-1/2) was achieved. Allan deviation shows good long-term stability of the NC-QEPAS sensor. With an integration time of 1000 s, the developed QEPAS sensor shows a detection limit of 0.4 ppm. The detection limit can be further improved with longer integration time. Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0134744
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy
    Jiapeng Wang
    Hongpeng Wu
    Angelo Sampaolo
    Pietro Patimisco
    Vincenzo Spagnolo
    Suotang Jia
    Lei Dong
    Light: Science & Applications, 13
  • [12] Off-beam quartz-enhanced photoacoustic spectroscopy
    Liu, Kun
    Guo, Xiaoyong
    Yi, Hongming
    Chen, Weidong
    Zhang, Weijun
    Gao, Xiaoming
    OPTICS LETTERS, 2009, 34 (10) : 1594 - 1596
  • [13] Fiber evanescent wave quartz-enhanced photoacoustic spectroscopy
    Ying, He
    Ma Yu-Fei
    Yao, Tong
    Peng Zhen-Fang
    Xin, Yu
    ACTA PHYSICA SINICA, 2018, 67 (02)
  • [14] Quartz-Enhanced Photoacoustic Spectroscopy in the Terahertz Spectral Range
    Votintsev, Alexey P.
    Borisov, Alexey V.
    Makashev, Didar R.
    Stoyanova, Mariya Y.
    Kistenev, Yury V.
    PHOTONICS, 2023, 10 (07)
  • [15] Oxygen Detection Based on Quartz-Enhanced Photoacoustic Spectroscopy
    Lu, Juncheng
    Wu, Huakun
    Zhang, Yixin
    Liu, Surui
    Zhao, Jiasheng
    Wu, Qiong
    Liu, Wen
    ACTA OPTICA SINICA, 2025, 45 (02)
  • [16] Radial-cavity quartz-enhanced photoacoustic spectroscopy
    Lv, Haohua
    Zheng, Huadan
    Liu, Yihua
    Yang, Zhifei
    Wu, Qian
    Lin, Haoyang
    Montano, Baiyang Antonio Zhou
    Zhu, Wenguo
    Yu, Jianhui
    Kan, Ruifeng
    Chen, Zhe
    Tittel, Frank K.
    OPTICS LETTERS, 2021, 46 (16) : 3917 - 3920
  • [17] Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor
    N. Petra
    J. Zweck
    A. A. Kosterev
    S. E. Minkoff
    D. Thomazy
    Applied Physics B, 2009, 94 : 673 - 680
  • [18] Helmholtz-resonator quartz-enhanced photoacoustic spectroscopy
    Luo, Huijian
    Wang, Chenglong
    Lin, Haoyang
    Wu, Qian
    Yang, Zhifei
    Zhu, Wenguo
    Zhong, Yongchun
    Kan, Ruifeng
    Yu, Jianhu
    Zheng, Huadan
    OPTICS LETTERS, 2023, 48 (07) : 1678 - 1681
  • [19] Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy
    Dong, Lei
    Wu, Hongpeng
    Zheng, Huadan
    Liu, Yanyan
    Liu, Xiaoli
    Jiang, Wenzhe
    Zhang, Lei
    Ma, Weiguang
    Ren, Wei
    Yin, Wangbao
    Jia, Suotang
    Tittel, Frank K.
    OPTICS LETTERS, 2014, 39 (08) : 2479 - 2482
  • [20] Optimization of spectrophone performance for quartz-enhanced photoacoustic spectroscopy
    Cao, Yingchun
    Jin, Wei
    Ho, Hoi Lut
    SENSORS AND ACTUATORS B-CHEMICAL, 2012, 174 : 24 - 30